Adele

Adele

GRADE 12 MATHEMATICAL LITERACY
PAPER 2 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

MEMORANDUM 

MARKS: 150 

Codes 

Explanation

Method

MA 

Method with Accuracy

CA 

Consistent Accuracy

Accuracy

Conversion

Define

Justification/Reason/Explain

Simplification

RD 

Reading from a table OR a graph OR a diagram OR a map OR a plan

Choosing the correct formula

SF 

Substitution in a formula

Opinion

Penalty, e.g. for no units, incorrect rounding off, etc.

Rounding Off

NPR 

No penalty for rounding OR omitting units

AO 

Answer only

 QUESTION 1 [31]

Ques. 

Solution 

Explanation 

Level

1.1.1 

Emerald – R 19 089 +✔ 
Onyx R 23 551 + ✔

1A Emerald 
1A Onyx (2)

L2

1.1.2 

Emerald = member + adult + child 
 = R2 477 + R1 761 + R914 ✔ 
 = R5 152 ✔ 

Onyx = member + adult + child 
 = R3 587 + R2 362 + R1 149 ✔ 
 = R7 098 ✔ 

Difference = 7 098 – 5 152 ✔ 
 = R1 946 ✔

1RT Correct values 
1CA Add values 
1RT Correct values 
1CA Add values 
1M Subtracting 
1CA Difference (6)

L2

1.1.3 

Government subsidy = R5 152 – R2 530 ✔ 
 = R2 622 

Government % = 2 622   × 100 ✔ 
                            5 152 
 = 50,89%  
 = 50,9%✔

1MA Difference 
1M ×100 
1CA % Rounded to  1decimal place (3)

L2

1.1.4 

It is important for people to be healthy. ✔✔ 

OR 

Accept any other relevant reason.

2O Importance  (2)

L4

1.2.1 

Volume = π × r2 × h ✔ 
 = 3,142 × 0,225 × 0,225 × 0,84 ✔✔ 
 = 0,1336 m3  

Volume of traditional beer = 70   × 0,1336 
                                            100
 = 0,09353 m3 ✔ 

OR 

Height of container = 0,7 × 0,84 
 = 0,588 m ✔ 

Volume = π × r2 × h 
 = 3,142 × 0,225 m × 0,225 m × 0,588 m ✔✔✔ 
= 0,09353 m3

1M Calculating radius
1 Conversion 
1SF Substitution in  formula
1MA Finding 70% 
1MA Finding 70% 
1M Calculating radius
1A Conversion 
1SF Substitution in  formula (4)

L3

1.2.2 

Length of store room = 2 m = 200 cm ✔ 
Number of the containers along the length 
= 200 / 45 ✔ 
= 4,444… 
= 4 containers ✔ 

Width of store room = 1,5 m = 150 cm 
Number of the containers along the width  
= 150 / 45  
= 3,333… 
= 3 containers ✔ 

Number of containers in total 
= 4 × 3 
= 12 containers ✔ 
Statement is invalid ✔

1M Conversion 
1M Dividing by 45 
1CA Number of  containers across the  length 
1CA Number of  containers across the  width 
1CA Total number of  containers 
1O Invalid (6)

L4

Ques. 

Solution 

Explanation 

Level

1.3.1 

Amount before increase = 336000/ 106,5%✔✔ 
= R315 492,96✔

1M Dividing  
1M Using 106,5% 
1CA Amount (3)

L2

1.3.2 

Bonus = 336 000 / 12 
 = 28 000 ✔ 

Year 1 = 105,8  × 28 000 ✔ 
                100
 = R 29 624 ✔ 

Year 2 = 106,5  × 29 624✔ 
                100
 = R 31 549,56 ✔

1M Monthly salary 
1M Using 5,8% 
1CA Amount 
1MA Finding 6,5%
1CA Amount (5)

L3

QUESTION 2 [42]

Ques. 

Solution 

Explanation 

Level

2.1.1 

10 hours = 10 × 60  
 = 600 minutes ✔ 
 1 page = 26 minutes 
600 minutes = 600 / 26 ✓ 
 = 23 pages ✔ 
Supposed to develop 23 papers therefore 20 papers are  below norm time. ✓

1MA minutes in 10  hours 
1M Dividing by 26
1CA Number of pages 
1O Conclusion (4)

L2

2.1.2 

% increase = 2015 rate - 2013 rate × 100   ✔ 
                                  2013 rate
 = 169,30−147,36   × 100 ✔ 
              147,36 
 = 14,89 % ✔ Accept 14,9%

1M Difference 
1M × 100 
1CA answer % (3)

L3

2.1.3 

Amount of developing material: 
norm time  × rate for developing × number of pages
     60
= 26 × 169,30 × 161 ✓ 
   60 
= 11 811,50 ✓ 

For 10 employees = 11 811,50 × 10  
 = 118 114,9667 ✓ 

Km travelled = 35×2×2×7+2×25×3×7+12×2×5×7✓ 
= 980 + 1 050 + 840 
 = 2 870 km ✓ 

Transport = rate for transport × number of km 
Amount = 2 870 × 2,82 ✓ 
 = R8 093,40 ✓ 

Total amount = 118 114,9667 + 8093,40  
 = R 126 208,37 ✓ 

Balance = R130 000 - R 126 208,37 
 = R 3 791,63 ✓ 

Statement invalid; Balance less than R4 000 ✓

1SF Substituting  correct values 
1S Simplification 
1CA For 10 people 
1M Calculating  distance 
1CA Total distance 
1M Multiplying rate  per km 
1CA Amount 
1CA Total Amount
1CA Difference
1O Invalid (10)

M&F 

L4

Ques. 

Solution 

Explanation 

Level

2.2.1 

USA: 
46 075,25 + 33% of amount above 189 300 ✓ 
= 46 075,25 + 0,33 (350 500 – 189 300) ✓ 
= 46 075,25 + 0,33 × 161 200 
= 46 075,25 + 53 196 
= 99 271,25 ✓ 
        12 ✓ 
= 8 272,60 dollars ✓

1 correct tax bracket
1 SF 
1 simplification 
1M dividing by 12 
1CA (5)

L3

2.2.2 

Income in South Africa  
= $350 500 × 14,11 
= R 4 945 555 ✓ 

Income Tax 
= 208 587 + 41% of amount above 701 300 ✓ 
= 208 587 + 0,41 × (4 945 555 - 701 300) 
= 208 587 + 0,41 × 4 244 255 
= 208 587 + 1 740 144,55 ✓ 
= 1 948 731,55 – 13 257 ✓ 
= 1 935 474,55 / 12 
= R 161 289,55 ✓ 
=R161 289,55/14,11 
= 11430,87 dollars✓ 

Statement is valid ✓

1 conversion 
1F Choosing correct  tax bracket 
1S Simplification 
1M Subtract rebate 
1CA Monthly Tax 
1C Answer in Dollars
1O Valid (7)

L4

2.2.3 

People in the higher tax brackets are feeding the  government bills. ✓✓ 

OR 

It is discouraging for people occupying higher positions  and earning higher salaries. ✓✓ 

OR 

People need to be treated equally✓✓ 
Accept any other valid reason

2R Reason (2)

L4

2.3 

Speed = distance
                 time
Time taken = 08:55 – 06:00 
 = 2 hours 55 minutes ✔ 

Less time spent in Nanaga  
= 2 hrs 55 min – 0 h 30 min ✔ 
= 2 hrs 25 minutes  
= 2,416666…hrs ✔ 

Speed =    311       
            2,416666✔ 
 = 128,69 km/h✔ 

They travelled above the speed limit ✔

1M Travelling time 
1M Difference in time
1C Conversion 
1SF Substitution 
1CA Speed 
1O Opinion (6)

L3

2.4 

School B ✔ has performed better.
The mean of School B is  higher, meaning 50% of the class were able to get 56. ✔✔
Minimum mark in School B is higher. ✔✔

1M Choosing school
2 O First reason 
2 O Second reason (5)

L4

QUESTION 3 [30]

Ques. 

Solution 

Explanation 

Level

3.1.1

✓ ✓ ✓ 58 + 279 + 45 + 455 + 232 + 303 + 280 + 49 + 498 ✓  = 2 199 km ✓

3RT (1mark for every  three correct values)
1M Adding  

1CA Answer (5)

M&P 

L2

3.1.2 

N1 – South Africa ✓ 
N4 – South Africa ✓ 
A3 – Botswana ✓ 
A2 – Botswana✓ 
B6 – Namibia 

4 (1 mark for route  and country).  
If only roads  mentioned max 2 
If only countries  mentioned max 2 (4)

M&P 

L2

3.1.3 

OPTION 1: 
Accommodation = R 1 550 
Breakfast = R 95 × 4 
 = R 380 ✓ 
Total amount = R 1 550 + R 380  
 = R 1 930 ✓ 

OPTION 2: 
Accommodation with breakfast = R 550 × 4  
 = R 2 200 ✓ 
Difference = 2 200 – 1 930 
 = R 270 ✓ 
Not true, they would save R 270 ✓

1MA Cost of  breakfast 
1CA Total cost 
1MA Total cost 
1CA Difference 
1O Invalid (5)

L4

3.1.4 

Probability of getting a self-catering unit at no extra cost
=  5✓  × 100  
    8✓
= 62,5% ✓ 
= 63% ✓

1A Numerator 
1A Denominator 
1CA % 
1 R Round to  nearest % (4)

L2

3.1.5 

Distance travelled 
= 58+98+41+41+550+105+105+738✔ 
= 1 736 km✓ 

Difference = 2199 – 1736 ✔ 
 = 463 km✓ 
Statement is valid ✓

1M Adding distances
1 CA Total distance 
1MA Finding the  difference 
1CA distance  
1O Valid (5)

M&P 

L4

3.2.1 

Percentage achievement in Mathematical Literacy is  decreasing from 2013 to 2016✔✔

2 O Describing the  trend (2)

L4

3.2.2 

Maths decreased from 2013 to 2015✔ 

Maths increased from 2015 to 2016✔

1O Description for  Mathematics for 2013  to 2015 
1O Description for  Mathematics for 2015  to 2016 (2)

L4

3.2.3 

Mathematics = 265 810 – 263 903 
 = 1 907✔ 
Mathematical Literacy = 388 845 – 361 865 
 = 26 980✔ 
Ratio = 1 907 : 26 980✔

1A Increase in  Mathematics 
1A Decrease in  Mathematical Literacy
1CA Ratio (3)

L3

QUESTION 4 [47]

Ques. 

Solution 

Explanation 

Level

4.1.1 

C = 2 × π × r  
157,1 = 2 × 3,142 × r ✔ 
157,1 = 6,284r 
r = 157,1 
6,284✔ 
 = 25 cm ✔ 
 = 0,25 m✔

1SF Substituting  correct formula 
1S Simplification 
1CA Calculate the  radius 
1C Convert to metres (4)

L3

4.1.2 

D = 0,25 × 2 
 = 0,5 m ✔ 
Total height = 1 + 0,75 + 0,5 
 = 2,25 m ✔ 
Space without decoration = 4 – 2,25  
 = 1,75 m ✔ 
From top and from bottom = 1,75 
                                                2 
 = 0,875 m ✔

1CA finding diameter 1CA total height
1CA space without  decoration 
1CA (4)

L3

4.1.3 

Area for red paint = area of rectangle + area of triangle  = ℓ × w + ½ b × h ✔
 = 1,5 m × 1 m + ½ × 0,75 m × 0,75 m ✔  = 1,5 m + 0,28125 m 
 = 1,78125 m2 ✔ 
For 15 decorations = 1,78125 × 15 
 = 26,71875 ✔ 
Two coats = 26,71875 × 2
 = 53,4375 m2 ✔ 
Litres of paint needed = 53,4375 
                                          8 
 = 6,6796875 ✔ 
5 litres = 6,6796873 
                      5 
 = 1,33 = 2 (5 litres of paint) ✔ 
Area for white paint 
= πr2 + ½ b × height  
= 3,142 × 0,25 × 0,25 + ½ × 0,75 × 0,75 
= 0,196375 + 0,28125 
= 0,477625 ✔ 
For 15 decorations = 0,477625 × 15 
 = 7,164375 
For 2 coats = 7,164375 × 2 
 = 14,32875 
Litres needed = 14,32875 
                                 8 
  = 1,79 
 = 1 (5 litre) ✔ 
White paint = R499 ✔ 
Red = 505 × 2 
 = R 1 010 ✔ 
Argument not valid, cost of red paint is not twice that of  white paint ✔

1M Using correct  formulae 
1SF Substituting 
1CA Area of shaded  parts 
1CA area for 15  decorations 
1CA for 2 coats 
1MA litres of paint  needed 
1MA number of 5 litre  tins 
1CA area for white  paint 
1CA number 5 litre  tins 
1MA cost for white  paint 
1MA cost for red  paint 
1O Not valid (12)

M&F 

L4

Ques. 

Solution 

Explanation 

Level

4.2.1 

North East 

2A Direction (2) 

M&P 

L2

4.2.2 

Mean = sum of values
                     21 
26,762 =   22+33+34+30+25+29+23+23+22 +30+29+30+28+24+25+25+58
                                                                 21✔ 
26,762 × 21 = 432 + 5B ✓ 
562 – 432 = 5B 
130 ✔=  5B 
130  = B  
  5
26 °C = B ✓

1SF Substitution 
1M Mean value ×21
1S Simplification 
1CA Value of B (4)

L3

4.2.3 

Minimum temperatures: 
Lower quartile (Q1) = 8  
Upper quartile (Q3) = 11  
Interquartile range = 11 – 8 
 = 3 ✓ 

Maximum temperatures: 
22 22 23 23 24 25 25 25 26 26 26 26 26 28 29 29 30 30 30  33 34 ✔ 
Median = 26 ✔ 
Lower quartile = 24+25 
                               2 
 = 24,5 ✓ 
Upper quartile = 29+30 
                              2 
 = 29,5 ✓ 
Interquartile range = 29,5 – 24,5 
                             = 5 ✓ 
Difference = 5 – 3 
 = 2 ✓

CA from 4.2.2 
1MA Finding IQR for  min. temp.
1M Ascending order 1CA Median 
1MA Finding Q1 
1MA Finding Q3 
1CA Finding IQR 
1CA Difference (7)

L3

Ques. 

Solution 

Explanation 

Level

4.2.4 

 graph

CA from 4.2.2 and  4.2.3 
5M (1 mark for every  set of bars plotted  correctly) 
1M Correct graph (6)

L2

4.2.5 

Probability that a temperature is ≥ 28 °C
= 8 ✓ 
   21✓ 
= 0,380952381  
= 0,381 ✓

1A Numerator 
1A Denominator 
1R To 3 decimal  places (3)

L2

4.2.6 

Measured distance = 6,6 cm✓ 
 = 6,6 cm : 1 045 km✓ 
 = 6,6 : 104 500 000✓ 
 =1 : 15 833 333,33✓ 
 = 1 : 16 000 000 ✓

1MA Measure on map (accept 6,4 - 6,8) 
1M Ratio 
1C Converting to cm
1S Simplification  
1R Round to nearest  million (5)

M&P 

L3

TOTAL: 150

GRADE 12 MATHEMATICAL LITERACY
PAPER 1 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

MEMORANDUM

MARKS: 150 

Symbol 

Explanation 

Method 

Accuracy

CA 

Consistent accuracy 

RT/RG/RM 

Reading from a table/Reading from a graph/Read from map

SF 

Substitution in a formula 

Penalty, e.g. for no units, incorrect rounding off etc. 

Simplification

Rounding/Reason

NPR 

No penalty for rounding



QUESTION 1 [30 MARKS]

   
     

QUES

Solution 

Explanation/m 

T/L

1.1.1 

   750  × 100% ✔ 
 3 200
= 23,44% ✔

1M Multiply by 100
1CA (NPR) (2)

LI

       

1.1.2 

Balance = 3 200 – 750 ✔ 
 = 2 450 ✔

1M subtraction 
1 CA (2)

L1

       

1.1.3 

Total amount paid = 750 + 5 × 300 ✔ 
 = R2 250 ✔

1M Adding and  Multiplying 
1 CA (2)

L1

       

1.2.1 

Rate in cents = 0,8865 × 100 ✔ 
 = 88,65 ✔

1M Multiplying  
1A (2)

L1

       

1.2.2 

Amount charged = 50 × 88,65 ✔ 
 = 4 432,5 cent✔  
OR 50 × 0,8865✔ 
 = R44,33 ✔

1M Multiplying  
1A 
(NPR)  (2)

L1

       

1.2.3 

Value Added Tax ✔✔ 

2 R   (2) 

F  

L1

       

1.3.1 

Time to clock off = 7:30 + 7 hr. = 14: 30 ✔ 
Then 15:00 + (15 min + 45 min) = 15:30 ✔

1M adding 7hr 
1A (2) 

L1

       

1.3.2 

Income = 26 × 7 × 20 ✔ 

 =R3 640 ✔

1M multiplication 
1CA (2)

L1

       

1.4.1 

Distance = 1 141 km ✔✔ 

2RT (2) 

M  

L1

       

1.4.2 

East London ✔ and Polokwane ✔ 

2RT (2) 

M  

L1

       

1.4.3 

Durban ✔and Cape Town ✔ 

2RT (2) 

M  

L1

       

1.5.1 

Parents in the survey = 24 + 32 + 16 + 13 + 5 ✔  = 90 ✔

1M Adding 
1A (2)

L1

       

1.5.2 

Less than 20% = 24 + 32 ✔ 
 = 56 ✔

1M Adding 
1A (2)

L1

1.5.3 

Modal range = 10–19 ✔✔ 

2RG (2) 

D  

L1

       

1.5.4 

Bar graph ✔✔ 

2RG (2) 

D  

L1

     

[30]

   

QUESTION 2 [42 MARKS]

   
     

QUES. 

Solution 

Explanation/m 

T/L

       

2.1.1 

Child support ✔✔ 

2RT (2) 

L1

       

2.1.2 

R1 525 + 2 x R350 ✔= R1 525 + R700 ✔  = R2 225 ✔

1MA amount  
1 S 
1CA amount (3)

L1

       

2.1.3 

R1 435 x 6,27% = 89,97 ✔ 
R1 435 + 89,97 = R1 524,97 ✔ 
R1 525 ✔ 

OR 

1435 x 1,0627 ✔= R1 524,97 ✔ 
 = R1 525 ✔

1MA multiply by  6,27% 
1CA addition 
1CA Rounding  
1MA multiply by  1,0627 
1CA  
1CA Rounding (3)

L1

       

2.2.1 

4 x R1 155,26 ✔ 
= R4 621,04 ✔ 

OR 

R5 620 – (115,80 + 192,98 + 690,18) 
R5 620 – R998,96 ✔ 
= R4 621,04 ✔ 

OR 

R4 929,82 – R115,80 – R192,98 
= R4 621,04

1M 
1CA 
1S 
1CA 
1M 
1A (2)

L1

       

2.2.2 

R0,00 ✔✔ 

2RT (2)

 

2.2.3 

R4 621,04 x 5,6%  
R258,78 ✔ 
R4 621,04 – R258,78 
R4 362,26 ✔ 
Price with VAT = 1,14 x 4362,26 ✔ 
 = R4 972,98 ✔ 

OR 

100% – 5,6%  
= 94,4% ✔ 
R4 621,04 x 94,4%  
R4 362,26 ✔ 
Price with VAT = 1,14 x 4362,26 ✔ 
 = R4 972,98 ✔

1MA Value of 5,6% 
1S Difference 
1M Subtraction 
1CA  
1M Multiply with 1,14
Price with VAT 
1M Difference in % 
1 CA Value of 94,4%
1M Multiply with 1.14
1CA Price with VAT  (4)

L3

       

2.3.1 

R8,3 billion ✔✔ 

OR 

8 300 000 000 ✔✔

2RT 
Penalise with 1 mark if  answer is written  without billion   (2)

L1

       

2.3.2 

R19,84 + R2,71 + R0,45 + R1,8 + R2,71 + R17,59 ✔
R45,1 billion ✔ 

OR 

R45 100 000 000 ✔✔

1M addition 
1CA 
2A 
Penalise with 1 mark if  answer is written  without billion (2)

L1

       

2.3.3 

1 Euro = R15,3728 
 ? = R1,8 billion 
? =    1.8    = € 0,1170899251 billion ✔ 
   15,3728✔ 
 = 0,1170899251 × 1 000 000 000 
 = €117 089 925,1

1M division 
1 CA  (2) 

L2

       

2.3.4 

96,0 – 36,8 ✔✔ 
= 59,2 billion ✔

1M correct values 
1M subtraction 
1A  
Penalise with 1 mark if  answer is written  without billion  (3)

L1

       

2.3.5 

17,59   x 100% ✔ 
45,1✔
 = 39% ✔

1M Division 
1M Multiply by 100 
1CA (3)

L2

       

2.3.6 

1,8 : 36,8 ✔✔ 
 1 : 20,44 ✔

1 Ratio  
1 Correct values 
1A (3)

L2

2.4.1 

R10,00 x 25 ✔ 
= R250,00 ✔

1M identifying R10
1CA (2)

L1

       

2.4.2 

260 x R1,50 ✔ 
= R390,00 ✔

1M 
1A (2) 

L1

       

2.4.3 

R11,00 ✔✔ 

2RT (2) 

L1

       

2.5.1 

Inflation is the increase in prices of goods and  services over time. ✔✔

2R   (2)

L1

       

2.5.2 

Inflation rate = new prices - old prices × 100% 
                                old prices
 =55,95−52,95  × 100% ✔ 
         52,95
 = 5,665 ✔ 
 = 6% ✔

1M Substitution 
1M simplification 
1A Rounded in %  (3)

L2

     

[42]

QUESTION 3 [23 MARKS]

   
     

QUES. 

Solution 

Explanation/m 

T/L

3.1.1 

28 + 2 × 10,6 + 41,2 + 28 ✔✔ 
= 118,4 g ✔

1M Addition 
1M 10,6 x 2 
1CA (One value missing)  (3)

L2

       

3.1.2 

Number of spoons = 2 7 , 5 ✔ 
                                  4 ,1 8 
= 6,6 teaspoons ✔ 
= 7 teaspoons ✔

1M Division 
1 CA when one of the  values is incorrect 
1R   (3)

L1

       

3.1.3 

50 × 500  = 25 000 
     250            250✔ 
= 100 cups ✔

1M  
1A (2)

L1

       

3.2.1 

Volume = length x width x height 
 = 28 cm x 15 cm x 8 cm ✔ 
 = 3 360 cm3

1SF  
1A (2)

L2

       

3.2.2 

Volume of chocolate =3 360 
                                     80✔ 
 = 42 cm3✔ 
Volume = area of base x thickness 
42 cm3 = 35 cm2 x thickness ✔ 
Thickness of chocolate = 42
                                         35 
= 1,2 cm ✔

CA from 3.2.1 
1M 
1A Volume of one  chocolate 
1S Substitution 
1A Thickness of chocolate  (4)

L3

       

3.3.1 

Diameter 
130 cm + 25 cm × 2 + 1,8 cm x 2 ✔✔ 
= 183,6 cm ✔

1M x 2 and addition 
1CA Diameter (2)

L2

       

3.3.2 

Area = 2,3 m x 2,3 m ✔ 
 = 5,29 m2

1SF  
1CA (2)

L2

       

3.3.3 

Area = 3,142 x (0,918 m)2 ✔✔ 
 = 2,647 m2 
 = 2,65 m2

1M SF 
1CA radius from 3.3.1 value of diameter 
1CA (3)

L2

       

3.3.4 

Wasted material = Area of material – Area of  tablecloth to cut 
 = 5,29 m2 ̶ 2,65 m2✔ 
 = 2,64 m2✔ 

CA from 3.3.2 and 3.3.3
1M subtraction 
1A   (2)

L2

     

[23]

QUESTION 4 [20 MARKS]

   
     

QUES 

Solution 

Explanation/m 

T/L

4.1.1 

Two ✔✔ 

2RM (2) 

L1

       

4.1.2 

Sample point E ✔✔ 

2 RM (2) 

L1

       

4.1.3 

Taaibuschspruit ✔ 
Leeuspruit ✔

1RM 1st side stream 1RM 2nd side stream  (2)

L1

       

4.1.4 

Scaled length = 3  x 100 000
                           25 000✔ 
 = 25 000 ✔ 
 = 12 cm ✔ OR 0,12 m

1M x 100 000 
1M Division 25 000
1A Distance in cm  (3)

L2

       

4.2.1 

(a) 

16 ✔✔ 

2RD (2) 

L2

         
 

(b) 

Fixed side ✔ and  Drop side ✔

1RD 1ste wood part 
1RD 2nd wood part (2)

L2

         
 

(c ) 

B ✔✔ 

2RD (2) 

L2

       

4.2.2 

16 ✔✔ 

2RM (2) 

L1

       

4.2.3 

 4 ✔ 
12 ✔ 
1
3

1M value of  numerator 
1M denominator 
1M simplified answer  (3)

L2

     

[20]

QUESTION 5 [35 MARKS]

   
     

QUES. 

Solution 

Explanation/m 

T/L

5.1.1 

Northern Cape ✔ 
Western Cape ✔

2RT  (2)

L1

       

5.1.2 

A  =11 705 + 5 105+4 568+10 070 + 13 022 + 5 091 + 1 963 + 3 543+3 589 ✔
= 58 656 ✔

1A adding 
1CA if one value is  missing (2)

L1

       

5.1.3 

613; 1 404; 2 122; 2 149; 2 290; 2 600; 2625; 3 492; 4 765 ✔✔

2M Ascending order  (2)

L1

       

5.1.4 

2 290 ✔✔ 

2CA from 5.1.3 (2) 

L2

       

5.1.5 

2 625 – 1 404 ✔✔ 
= 1 221✔

1M correct values 
1M subtraction 
1CA (3)

L1

       

5.1.6 

58 656 
     9 ✔ 
= 6 517,3 ✔ 
= 6 517 ✔

CA from 5.1.2  
1M dividing by 9 
1S 
1CA (using from  value from 5.1.2) (3)

L2

       

5.1.7 

Limpopo ✔✔ 

2RT (2) 

L1

       

5.2. 

A – Minimum value ✔ 
B – Lower Quartile ✔ 
C – Upper Quartile ✔ 
D – Maximum value ✔

1M Minimum 
1M Lower Quartile
1M Upper Quartile
1M Maximum (4)

L2

       

5.3.1 

Sample points 2 , 3 and 9 ✔✔ 

1M 1st sample point 1M 2nd and 3rd sample   points (2)

L1

       

5.3.2 

Significant risk of gastrointestinal disorders ✔✔ 

2RT (2) 

L1

5.3.3

   
     

algae

 

1 Mark per two points correctly plotted (5 x 1) 
1 Mark for joining the points 

(6)

 
     

5.4.1 

A ---- (H;H) ✔ 
B----- (T) ✔ 
C------(T;H) ✔

3A 1 mark for each  outcome

L2

       

5.4.2 

P(HH) =14✔✔ 

1M numerator 
1M denominator (2)

L2

       
 

[35]

   

TOTAL: 

150

GRADE 12 MATHEMATICAL LITERACY
PAPER 1 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

INSTRUCTIONS AND INFORMATION 

  1. This question paper consists of FIVE questions. Answer ALL the questions.
  2.            
    • 2.1 Use the ANNEXURES in the ADDENDUM to answer the following  questions:
      ANNEXURE A for QUESTION 1.4
      ANNEXURE B for QUESTION 4.1
      ANNEXURE C for QUESTION 4.2
      ANNEXURE D for QUESTION 5.3
    • 2.2 ANSWER SHEET for QUESTION 5.3.3.
      Write your GRADE and NAMES in the spaces provided on the ANSWER  SHEET. Hand in the ANSWER SHEET with your ANSWER BOOK. 
  3. Number the answers correctly according to the numbering system used in this  question paper. 
  4. Start EACH question on a NEW page. 
  5. You may use an approved calculator (non-programmable and non-graphical), unless  stated otherwise. 
  6. Show ALL calculations clearly. 
  7. Round off ALL final answers appropriately according to the given context, unless  stated otherwise. 
  8. Indicate units of measurement, where applicable. 
  9. Maps and diagrams are NOT necessarily drawn to scale, unless stated otherwise. 10. Write neatly and legibly.

QUESTIONS 

QUESTION 1 
1.1 

Ben buys a bicycle on lay-bye for R3 200. 
He pays a deposit of R750 and afterwards chose to pay R300 monthly to cover the  balance. 

1.1.1 Express the deposit as a percentage of the purchase price. (2)
1.1.2 Determine the balance, after the deposit has been paid. (2) 
1.1.3 Determine the total amount paid after the deposit and five instalments has   been paid.  (2)

1.2

Karen bought 50 Kwh of electricity from her municipality in June 2017 when the  tariff was 0,8865 R/Kwh (Rand per kilo-watt hour), including VAT. 

1.2.1 Calculate the rate (in cents) for the tariffs charged for the 50 Kwh of  electricity. (2)
1.2.2 Calculate the total amount charged for the 50 Kwh of electricity. (2)
1.2.3 Write the abbreviation VAT out in full. (2) 

1.3

 A care-taker at a school is paid at the rate of R26 per hour worked. He works from  7:30 am for 7 hours, excluding a 15-minute tea break and 45-minute lunch break. He does not work during weekends.  

1.3.1 Determine the time when he goes off duty. (2)
1.3.2 Calculate his income if he worked for four weeks. (2) 

1.4 

The distances between the cities in South Africa are shown in ANNEXURE A. Use  it to answer the following questions.   

1.4.1 Write down the distance between Mafikeng and Port Elizabeth. (2)
1.4.2 Name TWO cities that are equal distance from Kimberley. (2)
1.4.3 Which two cities are furthest apart? (2)

1.5 A research was carried out among some parents of Zozo High School to indicate the  percentage of their income they saved in June 2017. The results are shown on the  graph below. 

281 lkjalkj 

1.5.1 Determine the number of people that took part in the survey. (2)
1.5.2 Calculate the number of people who saved less than 20% of their income. (2) 
1.5.3 What was the modal range? (2) 
1.5.4 Write down the type of graph used to display the information. (2)

[30]

QUESTION 2 
2.1 In South Africa many families solely depend on social grants to sustain their  livelihood. Nobuzwe, a 78-year-old grandmother lives with her four grandchildren  and takes care of them. Study the information in TABLE 1 below on social grants  and answer the questions that follow. 

TABLE 1: MONTHLY SOCIAL GRANTS FOR FINANCIAL YEARS  2015/2016 AND 2016/2017 PER INDIVIDUAL 

Types of social grants 

2015/2016 

(in Rand)

2016/2017 

(in Rand)

State old age: (60–75 years) 

1 415 

1 505

State old age: (over 75 years) 

1 435 

1 525

War Veterans                                                                                                        

1 435 

Disability 

1 415 

1 505

Foster Care 

860 

890

Care Dependency 

1 415 

1 505

Child Support 

330 

350

[Adapted from People’s guide to the budget] 

2.1.1 Identify the social grant that increased the least over the two financial years. (2) 
2.1.2 Two of her four grandchildren received a child support grant. 
Calculate the total amount of social grant Nobuzwe and the two  grandchildren receive monthly for the 2016/2017 financial year. (3) 
2.1.3 The War Veterans’ social grant was increased by 6,27% at the end of the  2015/2016 financial year. Calculate the monthly amount after the increase  to the nearest rand. (3)

2.2 Ludwe, Nobuzwe’s son bought tyres for his expensive car from Lee Tyre and  Exhaust centre in Cape Town. Study the information on the invoice below and  answer the questions that follow. 

Lee Tyre and Exhaust Centre:                                                             
Cape Town.             

Tax Invoice
Invoice no.: 0021548
Time printed: 11:10
Ref no.: 54383644/P
 Date: 02/07/2016

R – Rands VAT – Value Added Tax 

Item detail 

Price excluding  VAT: (R)

Quantity 

Net Value  (R)

813750 FS TZ Firehawk tyres 

1 155,26 

4.000 

A

BBO Wheel balance (Standard) 

28,95 

4.000 

115,80

WWA 1 Wheel alignment 

192,98 

1.000 

192,98

       
   

Sub-total 

4 929,82

   

VAT 

690,18

   

Grand  

total 

5 620,00

   

Change 

0,00

2.2.1 Calculate the value of A, the Net value of Firehawk tyres. (2)
2.2.2 Write down the amount Ludwe received as change. (2) 
2.2.3 In August ONLY the tyres were discounted by 5,6%. Calculate how much Ludwe would have paid for the tyres, including VAT. (4)

2.3 Sasol has exploration, development, production, marketing and sales operations  in 36 countries around the world. Study the revenue contributions and the total  capital investments by region shown in TABLE 2 below and answer the  questions that follow. 

 TABLE 2:  

contribution 

[www.sasoltechnox.co.za] 

2.3.1 Write down the amount contributed to Revenue by the Rest of Africa. (2)
2.3.2 Calculate the total capital investments by Sasol in all regions. (2)
2.3.3 Convert the total capital investment in Europe into Euros. Given that 1 Euro = R15,3728 (2) 
2.3.4 Calculate the difference in contribution to revenue between South  Africa and Europe. (3) 
2.3.5 Express the capital investment in the United States as a percentage of  the total capital investments. (3) 
2.3.6 Write down Europe’s capital investments, to that of Europe’s revenue  contribution in the simplest ratio.  Give your answer in the form: 1 : … (3)

2.4 Lerato High School had a memorial service for Anako, one of Nobuzwe  grandchildren that was in Grade 10. Study the quotation from TABLE 3 below and  answer the questions that follow. 
TABLE 3: QUOTATION FOR PRINTING COSTS FROM THE  STATIONERY SHOP PER COPY 

 

A3 

A4

Copies 

Black and  

White 

Colour

Black and  

White 

Colour

Quantity 

S/S 

D/S 

S/S 

D/S 

S/S 

D/S 

S/S 

D/S

1–250 

R3,50 

R4,00 

 

R10,00 R12,00 

R1,50 

R2,00 

R5,00 

R6,00

251–500 

R3,00 

R3,50 

R9,50 

R11,50 

R1,00 

R1,50 

R4,50 

R5,50

501–1 000 

R2,80 

R3,00 

R9,00 

R11,00 

R0,85 

R1,05 

R4,00 

R5,00

1 000+ 

R2,50 

R2,70 

R8,50 

R10,50 

R0,75 

R0,95 

R3,00 

R4,50

S/S – Single sided D/S – Double sided 

2.4.1 The school will display TWENTY FOUR A3 single sided colour  advertisements in the community and ONE A3 single sided colour  advertisement outside the hall. Calculate the total amount the school will  pay for these copies. (2) 
2.4.2 The school will print 260 double sided black and white A4 programmes  for the service. Calculate the total cost for the programs. (2) 
2.4.3 Write down the amount charged per copy if you copy 520 A3 double  sided colour copies. (2) 

2.5 

The prices of 1 kg of corn flakes was R52,95 in June 2016 and R55,95 in June 2017.  

2.5.1 The price changes shown above are as a result of inflation. Explain the  term inflation from the above context. (2) 
2.5.2 Calculate the inflation rate used for the price changes on the cornflakes. Give your answer to the nearest percentage. 
You may use the formula: 

Inflation rate =New price – Old price x 100 (3) 
                                 Old price

[42]

QUESTION 3 
3.1 Excessive sugar intake is a health hazard. Study the information about the amount  of sugar in the chosen items mentioned in the TABLE 4 below and answer the  questions that follow. 

TABLE 4: AMOUNT OF SUGAR IN DIFFERENT CHOSEN ITEMS 

Item 

Amount of sugar (in grams) (g)

Capacity of an item

Sports drink 

28 

500 mℓ

Flavoured water 

20 

500 mℓ

Medium muffin 

10,6 

65 g

Sweetened fizzy drink 

55 

500 mℓ

Vitamin water 

27,5 

500 mℓ

Chocolate bar 

41,2 

80 g

1 tablespoon tomato sauce 

7,4 

Ice tea 

28 

330 mℓ

[Source: Discovery Vitality Kids report 2014 illustrations, Sock] 
NOTE: 1 teaspoon = 4,18 g 1 cup = 250 mℓ 

3.1.1 Rose drinks a can of ice tea and eats two medium muffins for breakfast, one  chocolate bar at break and one sports drink after running in the afternoon.  Calculate Rose’s total amount of sugar intake. (3) 
3.1.2 Determine the number of teaspoons of sugar in the vitamin water drink. Give your answer to the nearest teaspoon. (3) 
3.1.3 Calculate the number of cups you will get when you buy 50 bottles of  sports drink for your school teams. (2) 

3.2 The box shown below is used to pack 80 rectangular chocolate bars. The  measurements of the box are: length = 28 cm, width =15 cm and height = 8 cm. 
282

3.2.1 Calculate the volume of the box. 
You may use the formula.  
Volume = length ×width× height. (2)
3.2.2 Determine the thickness of a chocolate if the area of its base is 35 cm2.
You may use the formula:  
Volume = area of base × thickness (4)

3.3 The table Lindi uses for functions in a tent has a diameter of 130 cm. The circular  tablecloth used on the table overhangs 25 cm, all round. To make the tablecloth  she has to add 1,8 cm right around for the hem. The tablecloth material measures  2,3 m wide and 2,3 m in length. 
283 lojlakj

3.3.1 Calculate the diameter of the tablecloth to be cut from the material, including the additional centimetres for the hem. (2) 
3.3.2 Calculate the area (in m2) of the tablecloth material. 
You may use the formula:  
Area = Length x Breadth (2) 
3.3.3 Calculate the area (in m2) of a tablecloth to be cut by Lindi. 
You may use the formula:  
Area = π (radius)2, where π = 3,142 (3) 
3.3.4 Calculate the amount of material wasted when cutting the table cloth. 
You may use the formula: 
Wasted material = Area of a material – Area of tablecloth to be cut (2) 

[23] 

QUESTION 4 
4.1

Study the map on ANNEXURE B that shows the sample points for testing  Escherichia coli (E. coli) and Blue Green Algae counts per 100 mℓ.
Answer the questions that follow.  

4.1.1 Write down the total number of bridges found upstream (north east) of the  R59 bridge. (2) 
4.1.2 Name the SIXTH sample point on the map starting from the west side. (2) 
4.1.3 Lindi travelled by boat from Ascot Bridge to Vaalview Aquatic Club. Name  the side streams (tributaries) to the Vaal River that she will pass. (2) 
4.1.4 The distance between the R59 Bridge and Railway Bridge is 3 km. Calculate  the distance on another map if the scale is 1: 25 000. (3) 

4.2 Study ANNEXURE C showing the diagrams and corresponding letters, A; B; C and  D provided in order to assemble the cot and finally form a junior bed. 

4.2.1

    1. Write down the number of holes in the end panels. (2)
    2. Name the wooden parts that must be removed, to form the junior bed. (2)
    3. Which assembly illustration shows that the base is now added? (2) 

4.2.2 Calculate the number of pins and bolts needed to assemble the cot. (2) 
4.2.3 Determine the probability of randomly selecting an 80 mm bolt from a bag  containing only the bolts. Give your answer as a simplified common  fraction. (3)

[20]

QUESTION 5 
5.1 TABLE 5 below shows the number of learners who were condoned to Grade 12  (made to progress to Grade 12). Study the table and answer the questions that follow. 
TABLE 5: PROGRESSED LEARNERS 

Province 

Total number of progressed learners who

 

wrote matric 

in 2015

passed matric in  2015

currently is in  

matric in 2016

Eastern Cape 

11 705 

2 625 

18 255

Free State 

5 105 

2 600 

7 362

Gauteng 

4 568 

2 149 

N/A

KwaZulu-Natal 

10 070 

4 765 

24 549

Limpopo 

13 022 

3 492 

27 523

Mpumalanga 

5 091 

2 290 

11 160

Northern Cape 

1 963 

613 

2 280

North West 

3 543 

2 122 

6 654

Western Cape 

3 589 

1 404 

3 058

TOTAL 

22 060 

5.1.1 List the provinces with the number of progressed learners less than  5 000 in 2016. (2) 
5.1.2 Calculate the value of A in the table. (2) 
5.1.3 Arrange the number of progressed learners who passed matric in 2015 in  ascending order. (2) 
5.1.4 Determine the median of progressed learners who passed matric in 2015. (2) 
5.1.5 Calculate the difference between the progressed learners who passed Grade 12 in 2015 from the Eastern Cape and Western Cape. (3) 
5.1.6 Calculate the mean number of the progressed learners who wrote matric in  2015. Give your answer to the nearest whole number. (3) 
5.1.7 Identify the province with the highest number of progressed learners in 2016. (2)

5.2 Label the box and whisker diagram by matching the terms below with the letter  indicated on the diagram.  

Mean; Median; Mode; Minimum; Lower Quartile; Upper Quartile; Maximum;  Range  


  284

ONLY write down the letter and the correct term. (4) 

5.3 Study TABLE 6 in ANNEXURE D that shows the sample points for testing  Escherichia coli (E. coli) and Blue Green Algae counts per 100 mℓ to answer the  questions that follow. 

5.3.1 Identify the number(s) of sample points with the same values readings for the Blue Green Algae. (2) 
5.3.2 At sample point 8, the readings were 291 for E. coli counts per  100 mℓ. Write down the guideline on such readings. (2) 
5.3.3 Sketch the line graph showing the readings for Blue Green Algae counts  per 100 mℓ at all sample points. Use the ANSWER SHEET to draw the  graph. (6) 

5.4 Ludwe tossed a coin twice and recorded all the possible outcomes as displayed in  the tree diagram below: 
  285

5.4.1 Write down the possible outcomes represented by the letters A, B and  C. (3) 
5.4.2 Determine the probability of getting two heads when the coin is tossed  two times. (2)

[35] 
TOTAL: 150

ANSWER SHEET 

GRADE 12 
NAME OF LEARNER:
QUESTION 5.3.3 
answer sheet 5.2

GRADE 12 MATHEMATICAL LITERACY
PAPER 2 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

INSTRUCTIONS AND INFORMATION 
Read the following instructions carefully before answering the questions. 

  1. This question paper consists of FOUR questions. Answer ALL the questions. 
  2. Use the ADDENDUM with ANNEXURES for the following questions:
    ANNEXURE A for QUESTION 1.1
    ANNEXURE B for QUESTION 2.1
    ANNEXURE C for QUESTION 2.2
    ANNEXURE D for QUESTION 3.1
    ANNEXURE E for QUESTION 3.2
    ANNEXURE F for QUESTION 4.2
    ANSWER SHEET 1 for QUESTION 4.2.4 which is attached to the addendum.
    Write your NAME in the spaces provided on the ANSWER SHEET and hand in the  ANSWER SHEET with your ANSWER BOOK. 
  3. Number the questions correctly according to the numbering system used in this  question paper. 
  4. Start EACH question on a NEW page. 
  5. An approved calculator (non-programmable and non-graphical) may be used, unless  stated otherwise. 
  6. Show ALL calculations clearly. 
  7. Round off ALL final answers appropriately accordingly to the given context, unless  stated otherwise. 
  8. Indicate units of measurement, where applicable. 
  9. Maps and diagrams are NOT drawn to scale, unless stated otherwise.  10. Write neatly and legibly.

QUESTIONS 

QUESTION 1 
1.1

Mrs May is a single mother who is an educator earning R336 000 per annum. She has  two children, a 19-year-old boy who is at university and a 24-year-old girl who is not  studying nor working. Mrs May is a member of a medical aid scheme. 
She has two options to choose from. 
Study the information on ANNEXURE A to answer the questions below. 

1.1.1 Identify the salary row to which Mrs May belongs for both medical aid  options. (2) 
1.1.2 Calculate the difference in contribution for the whole family between the two  medical aid options for a month. (6) 
1.1.3 If she chooses Emerald and R2 530 is deducted from her salary, calculate the  percentage that the government subsidises her for medical aid. Round your  answer to one decimal place. 
Note: Government subsidy is the difference between medical aid  amount and the amount deducted from salary. (3) 
1.1.4 The medical aid scheme has a fitness exercise programme. What is the  importance of such a fitness programme? (2)

1.2

Mrs May had an initiation ceremony for her son in December 2015. 
They had traditional beer brewed in big cylindrical containers with dimensions as  shown below: 

276 cylindrical ioohjhu

Containers need to be 70% full of beer to allow space for fermentation. 
Note: Fermentation is a process occurring during brewing of the traditional  beer which releases gas in the form of bubbles on top of the beer. 

You may use the formulae:  
Volume = π × radius2 × height 
Area of rectangle = length × breadth 
Area of circle = π × radius2 
Where π = 3,142 

1.2.1 Calculate the volume of the traditional beer in 1 container in  cubic meters (m3). (4) 
1.2.2 Mrs May has a store room which has a length of 2 m and a width of 1,5 m.  She claims that she is able to pack 13 big beer containers on the floor of her  store room. Verify, showing all the necessary calculations, whether her claim  is valid. (6) 

1.3

Mrs May is planning for her son’s graduation and decides to invest her bonus money  for two years. She invests the money in an institution offering interest that is  compounded annually at an interest rate of 5,8% for the first year and 6,5% for the  second year. 
Note: Annual bonus money is a 13th cheque which is equal to the monthly salary  without deductions 
Note: She only used one year’s annual bonus 
Note: Her annual income is R336 000 after she received an increase of 6,5%

1.3.1 Calculate her annual income before she received the increase. (3) 
1.3.2 Calculate how much money will be paid out to her after the two-year period. (5)

[31]

QUESTION 2 
2.1

In 2015 people were employed to develop reading material for schools. They were  paid according to the number of pages they developed. Rates and information on  remuneration are given in ANNEXURE B. 
They spent 7 days developing the material. They travelled daily to and from the centre where they worked. They worked 10 hours per day. 

2.1.1 One of the employees developed 20 pages in 10 hours. Show, using  calculations, whether the employee was within the norm time, or not. (4) 
2.1.2 Calculate the percentage increase in rate of developing material from 2013 to  2015. (3) 
2.1.3 The manager is convinced that the R130 000 that he has budgeted for 10  employees to each develop 161 pages in seven days will be R4 000 more than  the amount needed. 
Note: Two employees live a distance of 35 km from the centre; three  live 25 km from the centre; and the rest live 12 km from the centre. 
Verify, showing all necessary calculations, whether the manager’s statement  is valid. (10) 

2.2 

Mr Reeva, a 58-year old USA citizen earning $350 500 taxable income per year. The USA Tax Table is shown on ANNEXURE C.  

2.2.1 Calculate how much tax Mr Reeva is paying per month. (5) 
2.2.2 Mr Reeva is claiming that if his earnings were taxed in South Africa, he  would be paying more tax per month. Use the South African Tax Table  shown in ANNEXURE C to verify whether his statement is valid. 
Given that $1 = R14,11 (7) 
2.2.3 From the Tax Tables, it is evident that the more you earn, the more tax you  pay. Mr Reeva claims that this is unfair. Support his claim by giving ONE  reason. (2) 

2.3 

Two friends are travelling from East London to Uitenhage which is a distance of  311 km. They leave East London at 06:00. They stop at Nanaga for 30 minutes for  refreshments. 

If the two friends reach Uitenhage at 08:55, show with calculations whether they did  not exceed the average speed limit of 120 kilometres per hour.  

You may use the formula: Speed =  Distance     (6) 
                                                           Time 
2.4

 Marks are recorded and analysed after marking has been completed and marks for 2  schools are compared. In School A, the maximum mark is 87 and the minimum mark  is 28 while the mean mark is 43. In School B the maximum mark is 76, the minimum  mark is 53 with a mean mark of 56.  

Which school has performed better? Give TWO reasons for your choice. (5)

[42]

QUESTION 3 
3.1

ANNEXURE D shows a strip chart from Pretoria to Windhoek. 
A couple with two adult children (both females), from Johannesburg, plan a holiday  and decide to go to Windhoek. On their way to Windhoek they visit the Moremi  Wildlife Reserve in Maun. When travelling to Maun they turn right at Lobatse and  take the A1 route and then pass through Nata. On the first day they get  accommodation at Moremi Wildlife Reserve and the next day proceed to Windhoek  via Ghanzi.  
Use the strip chart on ANNEXURE D to answer the following questions.  

3.1.1 How many kilometres do they travel to Windhoek? (5) 
3.1.2 Apart from route A1, which other routes do they travel on from  Johannesburg? Also, give the names of the countries where these routes are  found. (4) 
3.1.3

At Moremi Wildlife Reserve there are two accommodation options:
Option 1: Self-catering chalets for 4 people at R1 550 per chalet per night 
Option 2: A bed and breakfast at R550 per person sharing (with breakfast) 

The couple stated that if they choose Option 1 and decide to have breakfast  at a restaurant at R95 per person, they will be able to save R300. Show, with the necessary calculations, whether their statement is true, or not. (5) 
3.1.4 

At Moremi Wildlife Reserve there are 5 self-catering units accommodating 4  people and 3 self-catering units accommodating 6 people at extra cost if there  are only 4 people.  

If all self-catering units are still available when they are making their  booking, determine the probability of getting a self-catering unit at no extra cost. Give your answer to the nearest percentage. (4) 

3.1.5 

Mr and Mrs Smith, who are friends to the couple, are also on their way from  Johannesburg to Windhoek. They take a different route and spend a night at  Sun City. From Sun City they proceed to Tshane to visit some friends. After  their visit, they travelled on the A2 route to Windhoek.   

The two families are claiming that the difference between the distance  travelled by the couple with the two adults and the distance travelled by  Mr and Mrs Smith, is 463 km. Verify, with the necessary calculations,  whether the statement is valid. (5)

3.2 

The table in ANNEXURE E has information on the performance of Grade 12 learners  in some of the most popular subjects from 2013 to 2016.  

3.2.1 Describe the trend of the percentage achieved in Mathematical Literacy from  2013 to 2016. (2) 
3.2.2 Explain how the percentage achieved for Mathematics differ from the  percentage achieved for Mathematical Literacy for the period 2013 to 2016. (2) 
3.2.3 In January 2017 when the Minister of Education, Angie Motshekga,  announced the 2016 matric results, she mentioned that in 2016 the enrolment  for Mathematics increased from 263 903 to 265 810 and that of Mathematical  Literacy decreased from 388 845 to 361 865. Write the difference in the  Mathematics enrolment to the difference in the Mathematical Literacy  enrolment as a ratio. (3)

[30] 

QUESTION 4 
4.1

People in Mrs. Sibeko’s home village like colourful decorations.
They have decided  to decorate the outside walls of their community hall as shown in the diagram below. 

277 kjhbajhb

Notes: 

  • Dimensions are as indicated 
  • Circumference of the circular part is 157,1 cm
  • The two triangles are equal. 

You may use the following formulae: 

  • Area of rectangle = length × width
  • Circumference of circle = 2 × π × radius
  • Area of triangle = ½ × base × height
  • Area of circle = π × radius2; where π = 3,142 
 

4.1.1 Calculate the diameter of the circular part of the decoration in metres. (4) 
4.1.2 If the wall is 4 m high and the decorations are at equal distances from the top  and the bottom, calculate the distance that the decoration is from the top and  the bottom of the hall in metres. (4)
4.1.3

The decoration is painted using red paint for the shaded part and white paint  for the unshaded parts. Paint is sold in 5 litre tins at R499 for the white paint  and R505 for the red paint. Spreading rate for paint is 8 m2per litre. Two  coats of each colour will be needed and 15 decorations will be painted.  

Mr. Sibeko stated that the amount of money that they will spend for red paint  will be twice the amount of money that they will spend for white paint.  
Verify, with the necessary calculations, whether this statement is valid or not. (12) 

4.2 

The map in ANNEXURE F is showing maximum temperatures for some towns and  cities in South Africa and neighbouring countries.  

4.2.1 What is the general direction of Polokwane from Calvinia? (2) 
4.2.2 If the mean for the maximum temperature of all the towns and cities shown  on the map is 26,762 °C, calculate the modal value B for the 5 towns and  cities represented by B on the map. (4) 4.2.3 

The box and whisker diagram represents the minimum temperatures:
278 kljjkllj 

Calculate the difference between the interquartile ranges of the minimum  temperatures and maximum temperatures. (7) 
4.2.4 The box-and-whisker values for the minimum temperatures have already  been plotted in ANSWER SHEET 1. Plot the box-and-whisker values for the  maximum temperatures to complete a compound bar graph on the same  ANSWER SHEET. (6) 
4.2.5 Refer to the maximum temperatures as shown on the map and calculate the  probability of having a temperature equal to or more than 28 °C. Give your  answer as a decimal fraction to three decimal places. (3) 
4.2.6 The actual distance between East London and Cape Town is 1 045 km.  Calculate the scale used on the map and write it in the form 1 : ... Give your  answer to the nearest million. (5)

[47] 
TOTAL: 150

GRADE 12 MATHEMATICAL LITERACY
PAPER 2 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

ADDENDUM 

ANNEXURE A – QUESTION 1.1 
Table showing how much to pay for two different medical aid options in 2016: 
EMERALD: 

Salary row 

R 0 – R 11 053 

R 11 053 – R 19 089 

R 19 089+

Member row 

R 1 996 

R 2 210 

R 2 477

Adult row 

R 1 416 

R 1 583 

R 1 761

Child row 

R 731 

R 820 

R 914

ONYX: 

Salary row 

R 0 – R 11 053 

R 11 053 – R 23 551 

R 23 551+

Member row 

R 3 193 

R 3 322 

R 3 587

Adult row 

R 2 271 

R 2 351 

R 2 362

Child row 

R 949 

R 1 030 

R 1 149

[Source: www.gems.gov.za] 

Notes: 

  • Salary row reflects monthly salary before tax and other deductions. 
  • Member row shows how much the main member (person paying for the medical aid) has to  pay. 
  • Adult row shows how much you pay for adult dependent.
  • Child row shows how much the main member pay for child dependents (persons under the  age of 21). Persons that are mentally or physically disabled, younger than 28 and still  students at a recognised educational institution.

ANNEXURE B – QUESTION 2.1 
Remuneration for developing reading material: 

Rates for 3 consecutive years

Year 

2013 

2014 

2015

Norm time (in minutes) 

26 

26 

26

Rate for developing in Rand 

147,36 

138,25 

169,30

Rate for transport in Rand 

2,45 per km 

2,64 per km 

2,82 per km

Notes: 

  • Norm time = number of minutes taken to develop 1 page 
  • Total remuneration = amount of developing material + transport 
  • Amount for developing material =
    norm time/60 × rate for developing × number of pages developed
  • Transport fee = rate for transport × number of kilometres travelled

ANNEXURE C – QUESTION 2.2 
Tax Tables for Individuals: 
American Tax Table 2015/2016 (1 March 2015 to 29 February 2016) 

IF TAXABLE INCOME IS BETWEEN: 

THE TAX DUE IS:

0 – $9 225 

10% of taxable income

$9 226 – $37 450 

$922,50 + 15% of the amount over $9 225

$37 451 – $90 750 

$5 156,25 + 25% of the amount over $37 450

$90 751 – $189 300 

$18 481,25 + 28% of the amount over $90 750

$189 301 – $411 500 

$46 075,25 + 33% of the amount over $189 300

$411 501 – $413 200 

$119 401,25 + 35% of the amount over $411 500

$413 201 + 

$119 996,25 + 39,6% of the amount over $413 200

[Source: www.incometax/p/america] 

South African Tax Table 2015/2016 Tax Year (1 March 2015 to 29 February 2016) 

TAXABLE INCOME (R) 

RATES OF TAX (R)

0 – 181 900 

18% of each R1

181 901 – 284 100 

32 742 + 26% of the amount above 181 900

284 101 – 393 200 

59 314 + 31% of the amount above 284 100

393 201 – 550 100 

93 135 + 36% of the amount above 393 200

550 101 – 701 300 

149 619 + 39% of the amount above 550 100

701 301 and above 

208 587 + 41% of the amount above 701 300

Tax Rebates in South Africa 

TAX REBATE 

2016 

2015

Primary (younger than 65 years) 

R13 257 

R12 726

Secondary (65 years and older) 

R7 407 

R7 110

Tertiary (75 years and older) 

R2 466 

R2 367

[Source: www.sars.gov.za]

ANNEXURE D – QUESTION 3.1 
Strip chart map showing route from Pretoria to Windhoek: 

279 olkaok 

[Source: www.googlemaps.co.za]

ANNEXURE E – QUESTION 3.2 
Grade 12 performance of some subjects from 2013 to 2016: 

 

2013 

2014 

2015 

2016

SUBJECTS

Wrote

Achieved at
30% and above

% achieved

Wrote

 Achieved at 30%
and above

% achieved

Wrote

Achieved
at 30%
and above

% achieved

Wrote

Achieved
at 30%
and above

% achieved

Geography 

239 657 

191 834 

80,0 

236 051 

191 966 

81,3 

303 985 

234 209 

77,0 

302 600 

231 588 

76,5

History 

109 046 

94 982 

87,1 

115 686 

99 823 

86,3 

154 398 

129 643 

84,0 

157 594 

132 457 

84,0

Life Sciences 

301 718 

222 374 

73,7 

284 298 

209 783 

73,8 

348 076 

245 164 

70,4 

347 662 

245 070 

70,5

Mathematical Literacy 

324 097 

282 270 

87,1 

312 054 

262 495 

84,1 

388 845 

277 594 

71,4 

361 865 

257 881 

71,3

Mathematics 

241 509 

142 666 

59,1 

225 458 

120 523 

53,5 

263 903 

129 481 

49,1 

265 810 

135 958 

51,1

Physical sciences 

184 383 

124 206 

67,4 

167 997 

103 348 

61,5 

193 189 

113 121 

58,6 

192 618 

119 427 

62,0

[Source: www.eduation.gov.za]

ANNEXURE F – QUESTION 4.2 
Map with the maximum temperatures on 11 August 2016: 
280 klokakh

ANSWER SHEET 1 FOR QUESTION 4.2.4 
[Source: www.weathersa.co.za]

NAME:............................................................................... GRADE 12: ..........................................................

answer sheet asa 

GRADE 12 MATHEMATICAL LITERACY
PAPER 1 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

ADDENDUM 

ANNEXURE A: QUESTION 1.4 
DISTANCES IN KM BETWEEN THE CITIES IN SOUTH AFRICA

 

Bloemfontein 

Cape Town 

Durban 

East London 

Johannesburg 

Kimberley 

Mafikeng 

Port Elizabeth 

Pretoria 

Umtata

Bloemfontein 

– 

1004 

 

584 

398 

177 

464 

681 

455 

570

Cape Town 

1 004 

– 

1 753 

1 079 

1 402 

969 

1 343 

769 

1 460 

1 314

Durban 

634 

1 753 

– 

674 

557 

811 

821 

984 

636 

439

East London 

584 

1 079 

674 

– 

982 

780 

1 048 

310 

1 040 

235

Johannesburg 

398 

1 402 

557 

982 

– 

476 

287 

1 075 

58 

869

Kimberley 

177 

969 

811 

780 

476 

– 

380 

743 

530 

747

Mafikeng 

464 

1 343 

821 

1 048 

287 

380 

– 

1 141 

294 

1 034

Polokwane 

706 

1 710 

886 

1 290 

297 

780 

569 

1 383 

250 

1 181

Port Elizabeth 

681 

769 

984 

310 

1 075 

743 

1 141 

– 

1 133 

545

Pretoria 

455 

1 460 

636 

1 040 

58 

530 

294 

1 133 

– 

928

Umtata 

570 

1 314 

439 

235 

869 

747 

1 034 

545 

928 

QUESTION 4.1 ANNEXURE B

286 kjhak 

QUESTION 4.2: ANNEXURE C

 

287 kjhkj

Escherichia coli (E. coli) 

 

E. coli counts per 100 mℓ at sample points

Possible symptoms  include: 

  • Skin irritations
  • infections
  • gastrointestinal  disorders*

Sample points 

10

Results 

236 

649 

488 

140 

108 

16 

291 

1 236 

28

Guideline 

Low risk of  gastrointestinal disorders  E. coli < 130 counts/100  mℓ

Slight risk of gastrointestinal  disorders E. coli 130–200  counts/ 100 mℓ

Significant risk of  gastrointestinal disorders E.  coli 200–400 counts/ 100 mℓ

High risk of  gastrointestinal disorders  E. coli >400 counts/100  mℓ

 

Blue Green Algae 

Blue Green Algae counts per 100 mℓ at sample points

Possible symptoms  include: 

  • Skin irritations, 
  • infections and 
  • gastrointestinal  disorders*

Sample points 

10

Results 

181 

121 

121 

39 

294 

213 

422 

1 086 

121 

543

Guideline 

Low risk Blue Green Algae < 20,000 cells/mℓ

Moderate risk Blue Green Algae 20,000–100,000 cells/mℓ

High risk Blue Green Algae >100,000 cells/mℓ

QUESTION 5.3: ANNEXURE D 
TABLE 6: RESULTS OF THE TEST FOR ESCHERICHIA AND BLUE GREEN ALGAE AT DIFFERENT SAMPLE  POINTS AND A GUIDELINE TO THE RISK REGARDING READINGS 

 [Adapted from Barrage Weekly, 03 June, www.reservoir.co.za] 

*If ingested. X sample not received / no information available. Reports generated every Friday of the year. 

GRADE 12 MATHEMATICS
PAPER 1 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

The Mathematics P1 Grade 12 September was written on Friday, 15 September 2017. We  were made aware of certain amendments and omissions that were discovered during the  marking process. 
In order to address this and to ensure that learners are not disadvantaged, the following  standardised approach to marking must be adopted across the Province. The following  guidelines with regard to marking was prepared in conjunction with the examiner and  moderator. 

ERRATA

5.5

P (−3 / 2; −9 / 4
(−3 / 2  + 2 ; −9 / 4
(1 / 2  ; −9 / 4
or

f(x - 2) = (x - 2)(x - 2 + 3 )
f(x - 2) = x2 - x - 2
x = - (-1)
        2(1)
x = 1 /

✔✔ answer

f(x - 2) = x2 - x - 2

x = 1 /

 (2)

6.2 

q(x) = -2-x

✔ answer(1)

     

6.4 

y> 0 ; y ∈ R

(1)

     

6.5 

See 6.1

✔✓ shape and x-intercept(2)

     

10.2 

V = 2x  ×   x   ×  (81    −   2x
                           2x          3

V = 81x −4/3xa

✔✓ sub. into volume formula (2)

     

10.3 

dV = 81  - 4x2
dx
81 - 4x2  = 0

x2  =  81
          4
x = 9/2 = 4.5

✔81 - 4x2

✔x2  =  81
          4

✔answer(3)

GRADE 12 MATHEMATICS
PAPER 1 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

NOTE:

  • If a candidate answered a question TWICE, mark the FIRST attempt ONLY. 
  • Consistent accuracy applies in ALL aspects of the memorandum.
  • If a candidate crossed out an attempt of a question and did not redo the question, mark the  crossed-out attempt.
  • The mark for substitution is awarded for substitution into the correct formula. 

MEMORANDUM 

QUESTION 1 

?​

1.1  2?(? + 1) − 7(? + 1) = 0
(? + 1)(2? − 7) = 0
? = −1     or     ? = 72
? factors
? ?-value
? ?-value 
 (3) 
       
 1.2  ?2 − 5? − 1 = 0 
? = −? ± √?2 − 4??
             2?                                   
? = −(−5) ± √(−5)2 − 4(1)(−1)
                      2(1)
? = 5,19 or ? = −0,19
 ? substitution into correct formula
?? x- values
 (3)
       
1.3  4?2 + 1 ≥ 5?
4?2 − 5? + 1 ≥ 0
(4? − 1)(? − 1) ≥ 0
1.3 ans
x ≤ 1/      or       ? ≤ 1    
? standard form
? factors
 ?? ≤ ¼
?? ≥ 1
 (4)
       
1.4 54?+3. 100−2?+1 = 50 000
54?+3. (52. 22)−2?+1  = 50 000
54?+3. 5−4?+2. 2−4?+2 = 50 000
55. 2−4?. 22 = 50 000
2−4? = 22
−4? = 2
? = − 1/2
?5−4?+2
?2−4?+2
?−4? = 2
? answer
 (4)
       
1.5 ? = 2? …………………..(1)
?2 + 2? − ? − ?2 = 36……….(2)
? = 2?
sub into (2)
(2?)2 + 2(2?) − ? − ?2 = 36
4?2 + 4? − ? − ?2 = 36
3?2 + 3? − 36 = 0
?2 + ? − 12 = 0
(? − 3)(? + 4) = 0
? = 3   or ? = −4
? = 6 or ? = −8
?substitution
?standard form
? factors
? y − values
? x − values(5)
(5)
       
1.6 ?2 − ?? + ? − 1 = 0
∆ = ?2 − 4??
∆ = (−?)2 − 4(1)(? − 1)
∆ = ?2 − 4? + 4
∆ = (? − 2)2
∆ ≥ 0 roots are real and rational(perfect square)
?substitution
? simplification
? (? − 2)2
? conclusion(4) 
(4)
      [23]
QUESTION 2
2.1.1 ?? = 4? − 1
483 = 4? − 1
484 = 4?
? = 121
121 terms in series
?  ?? = 4? − 1
? equating 483
?  answer(3)
 (3)
       
2.1.2 121
   ∑    (4? − 1)
?=1
? answer (2)
       
2.2.1  (? − 3) − (2? − 4) = (8 − 2?) − (? − 3)
−? + 1 = −3? + 11
2? = 10
? = 5
? setting up equation
? simplification
? answer
(3)
       
2.2.2 … ; … ; … 6 ; 2 ; −2 ; … ; … ; …
?10 = 6        or              ?? = −4? + 46
? + 9? = 6                             ?1 = −4(1) + 46
? + 9(−4) = 6                        ?1 = 42?
= 42
? numerical values of?10; ?11; ?12
? difference  −4
?  a-value
(3)
       
2.3

??2 + ??3 = −4
? + ?? = −1 
??2(1 + ?) = −4
?(1 + ?) = −1
∴ ?2 = 4
∴ ? = ±2

? + ?(2) = −1
∴ ? + 2? = −1
3? = −1
? = − 1/3 
First three terms: − 1/3  ; − 2/3  ; − 4/3           

? setting of equations
? common factor
? ? = 2
? value of a
? first three terms
(6)
      [17
 QUESTION 3   
3.1

41 ; 43 ; 47 ; 53 ; 61 ; 71 ; 83 ; 97 ; 113 ; 131 
2        4       6        8        10     12      14      16       18
     2        2       2        2         2       2        2         2 
2? = 2            ? + ? = 2                ? + ? + ? = 41
? = 1                        ? = −1                            ? = 41
∴ ?? = ?2 − ? + 41

?  2nd difference
?  ? = 1
?  ? = −1
?  ? = 41
?  ?? = ?2 − ? + 41
(5)
       
3.2

?41 = 412 − 41 + 41
?41 = 1681

Factors of 1681: 1 ; 41 and 1681
1681 is not a prime number

? ?41 = 1681
?  factors
? conclusion
(3)
       
3.3 Consider the unit digits only
1 ; 3 ; 7 ; 3 ; 1 ; 1 ; 3 ; 7 ; 3 ; 1 ; 
groups of 5
49999998 = 9999999,6
      5
0,6  ×   5 = 3
?49999998 will end in 7
 ? unit digits
? groups of 5
? conclusion
(3)
      [11]
QUESTION 4
4.1.1 ? = ?(1 + ?)?
? = 500 000 (1 +     7,2     )12?
                              1200
? = 500 000(1.006)12?
?sub into formula
? 12?
 (2)
       
4.1.2 ? = 500 000(1.006)12?
? = 500 000(1.006)12×5
? = ? 715894.21
? ? = 60
?  answer
(2)
       
4.1.3

? = ?(1 + ?)?
1000000 = 500000(1.006)12?
12? =      log 2          
          log 1.006
12? = 115.8707581
? = 9,66 ?????

Will exceed R1 000 000 in 10 years.

? setting up equation
?  using logs
?  conclusion
(3)
       
4.2.1 ?V =  10 000 [1 − (1 + 15/1200 ) −36]
                          15/1200                               
?? = ?288 472,67
???????/? = ?350 000 − ?288 472,67
???????/? = ?61 527,33
? ? and ?
?sub into ?? formula
? ?? formuleü ?? = ?288 472,67
? subtracting
? answer
(5)
       
4.2.2 350 000    =  ? [1 − (1 + 18,5/1200−60]
                              18,5/1200
? = ? 8 983,17
? ? = 18,51200
?? = −60
? substitution
? answer
(4)
      [16]
QUESTION 5
5.1 ?(−3; 0) ? answer  (1)
       
5.2 ?(?) = ?2 + 3?
? = − ?
        2?
? = − 3
         2
? (− 3) = (− 3)2  + 3 (− 3)
       2          2               2
= − 9/4
? (− 3 ; − 9)
       2      4
?? = − 32   
?substitution 
?answer
(3)
       
5.3 ?(−5) = 10     and  ?(−3) = 0
? =     10 − 0            
         −5 − (−3)?
= −5
? calculating ?(−5) and ?(−3)
?  substitution
? ?-value
(3)
       
5.4 ? < −3 or / of ? > 0 ?answer  (2)
       
5.5

? (− 3 ; − 9)
        2     4
(− 3 − 2 ; − 9)
    2            4
(− 1 ; − 9)
    2      4             

 or


?(? − 2) = (? − 2)(? − 2 + 3)
?(? − 2) = ?2 − ? − 2
? = − (−1)   
          2(1)
? = − ½

? answer
? ?(? − 2) = ?2 − ? − 2
? ? = − 12
 (2)
       
5.6

?? = − 1/2 ? + 2 − (?2 + 3?)
?? = − 1/2 ? + 2 − ?2 − 3?
?? = −?27/2 ? + 2
?? = − (?2 + 7/2 ? − 2)
L? = − [(? +  7/4 )  −  81/16  ]
L? = − (? + 7/4 ) + 81/16

OR

?? = − 1/2 ? + 2 − (?2 + 3?)
?? = − 1/2 ? + 2 − ?2 − 3?
?? = −?27/2 ? + 2
??? = −2? − 7
??                 2
−2? − 7/2 = 0
? = − 7/4

? = − (− 7/4 ) 2  − 7/2  (−  7/4 ) + 2
? = 81/16
∴ ?? = − (? + 7/4)2   + 81/16

OR

? = − ?
2?
? = − [ − 7/2]
          2(−1)
? = − 7/4
? = − (− 7/4 ) 2  − 7/2  (−  7/4 ) + 2
? = 81/16
∴ ?? = − (? + 7/4)2   + 81/16

? ?(?) − ?(?) 
? standard form
?  completing the square
? answer

 

 

? ?(?) − ?(?)
? standard form
?  ? = − 7/4   
? ? = 81/16           

 

??(?) − ?(?)
? standard form/standaardvorm   
?  ? = − 7/4   
? ? = 81/16         

(4)

      [15]
QUESTION 6
6.1 ans 6.1 ? shape 
? y − intercept
? point on graph
(3)
       
6.2 ?(?) = 2? ? answer (1)
       
6.3 −1? = 2−?
−? = log ?
        log 2
? = − log ? / ? = − log2 ? /? = log½ ?
         log 2         
? interchange ? and ?
? equation
(2)
       
6.4 ? ≥ 0 ; ? ∈ ?   (1)
       
6.5 See 7.2.1 ??shape and x-intercept          (2)
       
 6.6 log1 ? = −321 −3(  )     = ? 2? = 8∴    0 < ? ≤ 8 ?? = 8 
?0 < ? ≤ 8
(2)
      [11]
QUESTION 7
7.1 ? = 5? = 2 ?? = 5?? = 2 (2)
       
7.2 ? = 5 − ?
      ? − 2
? = −(? − 2) + 3
          (? − 2)
? =     3     − 1
       ? − 2
?? = 5−?
         ?−2
 ?? = −(?−2)+3
              (?−2)
(2)
       
7.3 ?(5; 0)
? = ? − 3
? = ? + 3
?′(0 + 3; 5 − 3)
?′(3; 2)
?? = 3
?? = 2
(2)
      [6]
 QUESTION 8  
 8.1

?(?) = −2?2 + ?
?′(?) = lim ?(? + ℎ) − ?(?)
          ℎ→0       ℎ
= lim     −2(? + ℎ)2 + ? − (−2?2 + ?)
  ℎ→0                   ℎ 
= lim   −2(?2 + 2?ℎ + ℎ2)  + ? + 2?2 − ?)
  ℎ→0                             ℎ
= lim −2?2 − 4?ℎ − 2ℎ2 + ? + 2?2 − ?
  ℎ→0                     ℎ
= lim −4?ℎ − 2ℎ2
 ℎ→0        ℎ
= lim ℎ(−4? − 2ℎ)
  ℎ→0         ℎ
= lim(−4? − 2ℎ)
   ℎ→0
= −4?  

  • Answer ONLY: 0 marks
  • Penalise 1 mark for incorrect use of formula. Must show ?′(?)
? formula
? substitution of (? + ℎ) 
? simplification to
(−4?ℎ − 2ℎ2
? common factor
? answer
 (5)
       
8.2 HDGF   (4)
      [9]
QUESTION 9
9.1 ?(?) = (? − 1)2(? + 3)
?(?) = ?3 + ?2 − 5? + 3 
?′(?) = 3?2 + 2? − 5
3?2 + 2? − 5 = 0
(3? + 5)(? − 1) = 0
? = − 5/3       or ? = 1
?(1) = 0
? (− 5/3 ) = 256
                   27
?  ?(?) = ?3 + ?2 − 5? + 3
?  ?′(?) = 0
? factors
?  ?-values
?  ?-values
(5)
       
9.2 2567 ? shape 
? ? − intercepts
? ? − intercept
?  stationary points
(4)
       
9.3 ?′′(?) = 6? + 2
6? + 2 = 0
? = − 1/3
? = 128 / 27 / 4,74 / 4 20/27 
? f′′(?) = 6? + 2 
?? = − 1/3
?  ? = 128 / 27 / 4,74 / 4 20/27 
(3)
       
9.4 0 < ? < 25627 ??answer (2)
       
9.5 ?′(?) = 3?2 + 2? − 5
3?2 + 2? − 5 = −5
3?2 + 2? = 0
?(3? + 2) = 0
? = 0 or ? = − 2/3
? (− 2) = 175
       3      27         
y = −5? + ?
175  = −5 (− 2/3 ) + ?
 27                 3?
= 85
   27
? = −5? + 85
                27
? f′(?) = −5
? factors
? ? = − 2/3
? f (− 2/3) = 175
                     27
? substitution
? answer
(6)
      [20]
  QUESTION 10    
 10.1 243 = 2(? × 2?) + 2(2? × ℎ) + 2(? × ℎ)
243 = 4?2 + 4?ℎ + 2?ℎ
243 = 4?2 + 6?ℎ 
ℎ =   243 − 4?2
            6?
ℎ = 812?
      2?      3
? TSA equation and sub
? simplification
(2)
       
10.2 ? = 2? × ? × (812?)
                     (2?    3)
? = 81? − 4 ?3
             3
?sub into volume formula (1)
       
10.3 ?? = 81 − 4?2
??
81 − 4?2 = 0
?2 = 81
        4
? = 9 = 4.5
      2
? 81 − 4?2
? 81 − 4?2 = 0
? ?2 = 81
            4
? answer      
(4)
      [7]
  QUESTION 11    
11.1 9 × 9 × 9 × 5 × 4 = 14580 ?9 × 9 × 9
?5 × 4
? 14580
 (3)
       
11.2.1     12!    = 119750400
   2! .2!
? 12!
?2!.2!
? 119750400
(3)
       
11.2.2           10!           
           2!          = 1 = 0,015
119750400         66
?10!2!
? 119750400
? answer
(3)
      [9]
11.3.1  tree ? first branch with values
top part of second branch with values 
bottom part of second branch with values 
 (3)
       
11.3.2 ?(?) = 2
           3
?(?) = 2/3 (1)
       
11.3.3 ?(?/?) = 1 × 1
               3     2
?(?/?) = 1
               6
?(?/?) = 1/6 (2)
      [15]
      TOTAL: 150

GRADE 12 MATHEMATICS
PAPER 2 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

MEMORANDUM

 QUESTIONS 1   

Employee   5  7 8 9 10
Hours in training        16  36  20  38  40  30  35 22 40 24
Productivity (units produced per day)   45  70  44 56   60  48  75 60 63 38
 1.1  SCATTER PLOT

✔2-4 correct points

✔5-7 correct points 

✔plotting all points

(3) 
1.2 a = 29,22
b = 0,89
y = 29,22 + 0,89x
✔ A
✔ B 
✔ equation
(3)
1.3 (30,9 ;55,50)
y-int 29, 22
✔ mean point (30,90;55,50 ) and y-int 29, 22
✔ regression line
(2)
1.4

y = 29,22 + 0,89(25)
= 51,47
OR
y = 51,38       [calculator use]
ANSWER ONLY FULL MARKS

✔ answer (2)
1.5 r = 0,66 ✔ answer (1)
1.6 Moderately strong positive correlation  ✔ answer (1) 
      [12]
QUESTION 2
2.1 140 learners ✔ answer (1)
2.2 60 < x £ 70 ✔ answer (1)
2.3 CUMMULATIVE GRAH ✔ grounding
✔ cummulative frequency
✔ plotting against the upper limit
✔ shape
(4)
2.3  Q3 - Q1  = 72 - 55
= 17
✔ Q3 & Q1
✔IQR
(2)
      [8]
QUESTION 3
 Q3RR
3.1  BC : x + 2 y = 14

y = - 1 x + 7
        2
mBC = mAD  = - 1/2
y - 5 = - 1 (x + 1)
             2
y = - 1 x + 9
        2       2

✔  = mAD  = - 1/2
✔ subst. m and A into correct formula
✔ y = - 1 x + 9
            2       2
(3) 
3.2

- 1 x + 9 = 0
  2       2
x = 9
D(9; 0)

OR

mAD   = mBC
0 - 5 = - 1
x + 1      2
- 10 = -x - 1
x = 9
D(9; 0)

✔ y = 0
✔ x = 9
✔ y = 0
✔x = 9
(2)
 3.3

mFD2 - 0
         10 - 9
= 2
mBC  × mFD  = 2 × - 1
                                 2
= -1
FD ⊥ BC     [mBC × mFD   = -1]

✔ correct subst.
✔  mFD = 2
✔ mBC × mFD   = -1
 (3)
3.4

AD =√(-1 - 9)2  + (5 - 0)2
= √125
= 5√ 5

✔ subt. into correct formula
✔  AD = 5√ 5

(2)
3.5

FD = √(9 -10)2  + (0 - 2)2
=  √5
A of ABCD = b ×  h
= 5 √5 ×√5
= 25

✔ subst. into correct formula
✔  FD = √5
✔  subst into correct formula
✔  answer

(4)
3.6

mAB  = mDC
 6 - 5    
   2 - (-1)
1
   3
∴ Inclination of DC = 18, 43º
Inclination of AD = 180º - tan-1 [½]
= 153, 43º
ADC = 153, 43º -18, 43º
= 135º
∴ ABC = 135º   [opp∠s of a parm.]

✔ subst. into correct formula
✔ mAB  = 1
                3
✔  θDC = 18, 43º
✔  θAC = 153, 43º
✔ AD C = 135º 
✔  ABC = 135º 

(6)
      [20]
QUESTION 4
q4
4.1

xS  = 0 + 4               yS   = 0 - 6
            2                               2
= 2                                   = -3
S(2; - 3)
Answer only full marks

✔ subst. into correct formula
✔  both coordinates

 
4.2

SP = √(2 - 4)2  + (- 3 + 6)2
= √13

✔ subst. into correct formula
✔  answer

(2)
4.3 (x - 2)2  + (y + 3)2   = 13

✔ correct subt. centre
✔  r 2 = 13.

(2)
4.4 Tangent ⊥ radius ✔ answer (1)
4.5

mrad  = - 3 + 6
              2 - 4
= - 3
     2
mtan = 2           [radius ⊥ tan] 
           3
y + 6 = 2 (x - 4)
            3
2 x - 26
   3       3

✔ subst. into correct form.
✔ mrad  = - 3
                   2
✔ mtan = 2         
                3
✔ subst. into correct form

(4)
4.6

(0 - 2) + (y + 3)2   = 13
(y + 3)2   = 9
y + 3 = ±3
yT = -6
T (0; - 6)

OR 

(0 - 2)2  + (y + 3)2   = 13
y 2 + 6 y = 0
y(y + 6) = 0
yT = -6
T (0; - 6)

OR 

Draw horizontal line y = -3 with M on OT
OM = MT         [⊥ from centre bisect the chord]

OM = 3
∴ MT = 3
∴ OT = 6
∴ T (0; - 6)

✔ x = 0
✔ (y + 3)2   = 9
✔ y + 3 = ±3
✔ yT = -6
✔ subs.x = 0 in eqn of circle
✔ standard form
✔ factors
✔ yT = -6
✔ S/R
✔ length of MT
✔ length of OT
✔ answer

(4)
4.7

At U , y = - 26
                   3
∴TU = 26 - 6
           3
8
   3
Area ΔOTP = 1/2 × 6 × 4
Area ΔPTU   1/2 × 8/3 × 4
9
   4

✔ U [ 0 ; -26/3]
✔ lenght of TU
✔ lenght of OT
✔ correct subst.
✔ answer
(5)
      [20]
QUESTION 5
5.1.1

sin 2x = √15
                8 
DIAGRAM ANS
cos2x = 2 cos2 x - 1
2 cos2 x = cos2x + 1
cos x = √cos2x + 1
                      2
= √ 7/8  + 1 
         2
= √15  
      4
 OR

cos2x = 2 cos2 x -1
7 = 2 cos2 x -1
8
15 = cos2 x
16
∴ cos x = √15  
                   4

✔ diagram 
✔  identity of cos2x 
✔  cos x subject of formula 
✔ cos2x = 7
                 8
✔  answer
✔  identity 
✔  cos2x = 7
                  8
✔ cos2 x = 15
                  16
✔ answer

(5)
5.2

sin(180º - θ ).sin(540º - θ ).cos(θ - 90º)
            tan(- θ ).sin2 (360º - θ )      
(sinθ)(sinθ ).(sinθ ).
   (- tanθ )(- sinθ )2
       sinθ      
        - sinθ
         cosθ
= -cosθ

✔ sin θ
✔  sin θ
✔  sin θ
✔  (- tanθ )
✔  (- sinθ )2
✔  sinθ = tan θ
     cosθ
✔  (- cosθ )

(7)
5.3.1

LHS = sin 5x. cos3x - cos5x.sin 3x -1
                          tan 2x
sin(5x - 3x) -1
        tan 2x
=        sin 2x          -1
          sin 2x
         cos 2x
= cos 2x -1
= 1- 2 sin 2 x -1
= -2 sin 2 x
∴ LHS = RHS

✔ sin (5x - 3x)
✔ tan 2x =  sin 2x
                  cos 2x

✔ simplification
✔ identity  
      1- 2 sin 2 x

(4)
5.3.2

tan 2x = 0
2x = 0º  or 180º
x = 0º  or 90º

OR

tan 2x is undefined
2x = 90º or 270º
x = 45º or 135º

✔ tan 2x = 0 / undefined
✔ 0º  or 180º
✔ 90º or 270º
✔ answer
(4)
      [20]
  QUESTION 6    
6.1 ANS 6.1 P2

f
? both intercepts 
?asymptote
?shape  

g
?intercepts
?min& max values 
?shape

(6)
6.2 period(e) of f(½x) =  180º
                                   ½
= 360º
Answer only full marks
? =  180º
         ½
? 360º
(2)
6.3 0º < x < 30º

?critical values 
?notation

(2)
6.4 x = 170º ? answer (1)
      [11]
QUESTION 7
 q7
7.1 Area ΔABC = .AB.BC.sinB
                      2
= 1 × 17 × 17 × sin105º
   2
= 139,58

? Area rule formula 
? correct subst. 
?answer

(3)
7.2

AC 2 = AB2 + BC2 - 2.AB.BC.cosB
= 172 + 172 - 2.17.17.cos105º

= 727,5974081
∴AC = 26,97

? cosine rule formula
? correct subst into cosine rule
? AC = 26,97

(3)
7.3

sinACDsinD
    AD         AC
sinACDsin75º
  13          26,97
sinACD = 13 × sin75º
                         26,97
= 0,4655927231
ACD = 27,75º

? sine rule formula
? correct subst. into sine rule
? answer 

(3)
7.4

Converse opp ∠ s of a cyclic quad

OR

int.opp.∠ s of a quad suppl

 

? reason

OR

? reason

 (1)
      [10]
QUESTION 8
q8
8.1.1 S = 90º    [∠ in semi - circle] ?      S     
?      R
(2)
8.1.2 

T2   = S = 90º       [corresp.∠ s  RS ΙΙ Q]
∴ T is the midpt of SP         [ line from centre ⊥ to chord]
QP = 10 andTP = 8
QT2 = (10)2  -  (8)2                     [Pyth.Theorem]
∴ QT = 6
QU = QP = 10                [radii]
∴ TU = 4

?      S/R
?      S/R
?      subst. into Pyth. 
?       QT
?       S/R
?      TU

(6)
q8.2
8.2.1 B = 30º     [tan chord theorem] ?S         ? R (2)
8.2.2  P2 = 30º [alt ∠ s, BS ΙΙ PQ] ?S         ? R (2)
8.2.3  R = 150º  [opp  ∠ s of a cyclic quad] ?S         ? R (2)
8.2.4

Q2  = S3        [∠  s opp =sides] 
Q2 180º -150º                  [sum of ∠ sin a Δ] 
                  2
= 15º

? S/R
? S
? answer

(3)
      [17]
QUESTION 9
q9.1
9.1

O1  = P1 + A and  O2 = P2 + B  [ext ∠ of a Δ] 
AO = OP = OB                           [radii] 
P1  = A  and  P2   = B                 [∠ s opp =sides] 
∴ O1  = 2P and O2   = 2P2
∴O1  + O = 2P1  + 2P2
AOB = 2 (P1 + P2)
= 2APB

?S/R
?S/R
?S/R
?S
(4)
q9.2
9.2.1

RUT = 90º        [∠ in a semi - circle] 
X1   = 90º       [line from centre to midpoint] 
∴RU ΙΙ SY [corresp.∠ s =] 

OR

RUT = 90º        [∠ in a semi - circle] 
X1   = 90º       [line from centre to midpoint]
∴ RUT + X2 = 90º + 90º = 180º
∴RU ΙΙ SY [co-int.∠ s supp] 

?S         ? R
?S         ? R
? R
?S        
? R
?S        
? R
? R

(5)
9.2.2

R2  = y                 [tan chord theorem] 
= O1                      [alt ∠s, RU ΙΙ SY]
∴T1 O1     [∠ at centre = twice ∠at circumf.]
          2     
= 1 y
   2

?S         ? R
?S         ? R
? R
(5)
9.2.3

O = y = O1        [vert opp.∠ s] 
TUV = y            [tan from same point =in length] 
∴ TOUVis a cyclicquad            [converse same segment]

OR 

VTO = 90º                      [tan ⊥ radius] 

VUO = 90º                      [tan ⊥ radius] 

∴VTO + VUˆ O = 180º

∴TOUVisa cyclicquad   [converseoppÐsof cyclicquad.supp]

?S         ? R
?S         ? R
? R
?S         ? R
?S         ? R
? R

(5)
      [19]
QUESTION 10
q10
10.1

BA = BC    [prop theorem; EF ΙΙ  AC]
EA    FC
= CA   [prop theorem; ED ΙΙ BC]   
   DA
BCCA
  FC    DA

?S ?R
?S
?R
(4)
10.2 B2 = E3     [corresp ∠s : EDΙΙBC]
E1 = A        [corresp ∠s : EFΙΙAC]
∴F3 = D1     [sum of  ∠s of Δ ]
∴ΔBFE ΙΙΙ ΔEDA     [∠∠∠]
?S/R
?S/R
?R
(3)
10.3.1 AD = ED           [ΔBFE ΙΙΙ ΔEDA]
FE    BF
AD = 10 
 2      3,5 
AD = 40 = 5,71 
         7
?S
?R
? subst.
? AD
(4)
10.3.2 DC = EF = 2 [opp.sidesof a parm] ?S
?R
(2)
      [13]
      TOTAL : 150

GRADE 12 MATHEMATICS
PAPER 2 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

INSTRUCTIONS AND INFORMATION 

  1. This question paper consists of 10 questions.
  2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
  3. Clearly show ALL calculations, diagrams graphs, et cetera which you have used in  determining the answers.
  4. Answers only will NOT necessarily be awarded full marks.
  5. If necessary, round off your answers to TWO decimal places, unless stated otherwise
  6. Diagrams are not necessarily drawn to scale.
  7. You may use an approved scientific calculator (non-programmable and non-graphical)  unless stated otherwise.
  8. An information sheet with formulae is included at the end of the question paper. 9. Write neatly and legibly.

QUESTIONS

QUESTION 1 
A training company wants to know if there is a link between the hours spent in training by a  particular category of employee and their productivity (units produced per day). The following  data was extracted from files of 10 employees. 

Employee 

10

Hours in training 

16 

36 

20 

38 

40 

30 

35 

22 

40 

24

Productivity (units produced per day) 

45 

70 

44 

56 

60 

48 

75 

60 

63 

38

1.1 Draw a scatter plot of the data on the grid provided in the ANSWER BOOK. (3)
1.2 Determine the equation of the least squares regression line. (3)
1.3 Draw the least squares regression line on the scatter plot drawn in QUESTION 1.1. (2) 
1.4 Use the least squares regression line to predict the productivity (units produced per day),  if a particular category of employee spent 25 hours in training. (2) 
1.5 Determine the correlation coefficient of the data. (1) 
1.6 Comment on the strength of relationship between the hours spent in training and the  number of units produced per day. (1)

[12]

QUESTION 2 
The marks obtained by learners of a certain school in a Mathematics test is represented in the  histogram below: 
q2
2.1 How many learners wrote the test? (1)
2.2 Write down the modal class. (1)
2.3 Draw the ogive for the given information. (4) 
2.4 Use the ogive to estimate the interquartile range. (2)

[8] 

QUESTION 3 
In the diagram below, A (-1 ; 5), B (2 ; 6), C and D are the vertices of parallelogram ABCD.  Vertex D lies on the x-axis. The equation of BC is x + 2y = 14. 
q3
3.1 Determine the equation of line AD in the formy = mx + c. (3) 
3.2 Determine the coordinates of D. (2)
3.3 If the coordinates of F are (10 ; 2), show that DF is perpendicular to BC. (3)
3.4 Calculate the length of AD. (Leave your answer in surd form.) (2)
3.5 Hence, or otherwise, calculate the area of parallelogram ABCD. (4) 
3.6 Calculate the size of AB̂C. (6)

[20]

QUESTION 4 

In the diagram below, the circle with centre S, passes through the origin, O, and intersects the  x-axis at R and y-axis at T. The tangent to the circle at P(4 ; -6) intersects the x-axis at Q and  the y-axis at U. 
q4
4.1 Calculate the coordinates of S, the centre of the circle. (2) 
4.2 Calculate the length of the radius of the circle. (Leave your answer in surd form.) (2)
4.3 Determine the equation of the circle in the form of (x − a)2 + (y − b)2 = r2. (2)
4.4 Why is QP̂U = 90°? (1)
4.5 Show that the equation of the tangent UQ is: y =2/3x −26/3. (4)
4.6 Determine the coordinates of T. (4)
4.7 Determine the ratio of Area △OTP  in its simplest form. (5) 
                                         Area △PTU

[20]

QUESTION 5 

5.1 Given: sin 2x =√15  and 0° ≤ 2x ≤ 90°. 
                                x
Determine with the aid of a diagram and without using a calculator the value of cos x. (5)
5.2 Simplify the following expression to one trigonometric ratio of θ: 
            sin(180° − θ) . sin(540° − θ). cos(θ − 90°) 
                           tan(−θ). sin2(360° − θ) (7)
5.3 Given the identity: sin 5x.cos 3x.−cos 5x .sin3x  − 1 = −2 sin2x. 
                                                tan 2x

5.3.1 Prove the above identity. (4) 
5.3.2 For which value(s) of x will the above identity be undefined for 0° ≤ x ≤ 180°. (4)

[20]

QUESTION 6 
Given f(x) = tan 1/2x and g(x) = sin(x − 30°) for x ∈ [−90°; 180°] 
6.1 On the same set of axes draw the graphs of f and g. Show clearly on your graphs the  turning points and asymptotes, if any. (6) 
6.2 Write down the period of f. (2)
6.3 For what values of x is f(x). g(x) < 0 for x ∈ [−90°; 120°]? (2) 
6.4 Write down the equation(s) of the asymptotes of h if ℎ(x) = f(x + 10°) for x ∈ [−90°; 180°] (1)

[11]

QUESTION 7 
In the diagram below, ABCD is a quadrilateral with diagonal AC drawn. 
AB = BC = 17 m 
AD = 13 m 
D̂ = 75° 
B̂ = 105° 
q7
Calculate: 

7.1 The area of △ ABC. (3)
7.2 The length of AC. (3)
7.3 The size of AĈD. (3) 
7.4 Give a reason why ABCD is a cyclic quadrilateral. (1)

[10]

Give reasons for ALL statements in QUESTION 8, 9, 10 AND 11. 
QUESTION 8 
8.1 PR is a diameter of the circle PRSU. QU is drawn parallel to RS and meets SP in T.

q8

8.1.1 Write down, with a reason, the size of Ŝ. (2)
8.1.2 If the diameter is 20 cm and SP = 16 cm, calculate the length of TU. (6)

8.2 ABC is a tangent to circle BPQRS at B. PQ ∥ BS. QR = RS. Ŝ1 = 30° and B̂3 = 70°. 
q8.2
Calculate, with reasons, the size of the following angles: 

8.2.1 B̂1(2)
8.2.2 P̂2(2)
8.2.3 R̂ (2) 
8.2.4 Q̂2(3)

[17]

QUESTION 9 
9.1 A, B and P are the points on the circle with centre O. AO, BO, AP and BP are drawn. 
q9.1
Prove the theorem which states that AÔB = 2AP̂B. (4)
9.2 TV and VU are tangents to the circle with centre O at T and U respectively. TSRUY are  points on the circle such that RT is the diameter. X is the midpoint of chord TU. T̂3 = y. 
q9.2
Prove that: 

9.2.1 RU ∥ SY (5)
9.2.2 T̂1=½y (5) 
9.2.3 TOUV is a cyclic quadrilateral (5)

[19]

QUESTION 10 
In the diagram below, D and E are points on sides AC and AB respectively of △ ABC such that  DE ∥ BC. F is a point on BC such that EF ∥ AC. AB produced and DF produced meet in G. 
q10
10.1 Prove that: BC   =    AC 
                          FC         DA(4)
10.2 Prove that: Δ BFE ||| Δ EDA(3)
10.3 It is further given that EF = 2, BF = 3,5 and ED = 10, determine the length of: 

10.3.1 AD (4) 
10.3.2 DC (2)

[13] 
TOTAL: 150

injfo sheet p2