MEMORANDUM

QUESTION 1
1.1 D (2)
1.2 C (2)
1.3 A (2)
1.4 A (2)
1.5 C (2)
1.6 B (2)
1.7 B (2)
1.8 D (2)
1.9 D (2)
1.10 B (2)          [20]

QUESTION 2
2.1

  • A series of organic compounds that can be described by the same general formula
    OR
    A series of organic compounds in which members differ by the number of – CH2 units  (2)

2.2 A compound that contains carbon and hydrogen (atoms) only  (2)
2.3.1 CnH2n+2 (1)
2.3.2 4-ethyl -2,2-dimethyl hexane
Marking criteria

  • Hexane
  • Methyl/Metiel and
  • whole name correct 3/3
    Deduct 1 mark for any error, hyphens omitted, incorrect sequence etc  (3)

2.4.1 2.4.1 AIIUGYDUAY  (2)

Marking criteria

  • Hexane
  • Methyl and ethyl 
  • whole name correct  3/3
    Deduct 1 mark for any error, hyphens omitted, incorrect sequence etc

2.4.2 Butan-2-one OR 2-butanone (2)

Marking criteria

  • Functional group and correct position g pent-2-one (1/2)
  • Whole name correct (2/2)

2.4.3

  • The functional group can only be in position 1
    OR
    Side chain / branch / methyl group can only be in position 2  (1)

2.5.1 Polymerisation (1)
2.5.2 Contains single bonds only (1 or 0) (1)
2.5.3 Use in plastics (toy cars) (1)
[16]

QUESTION 3
3.1 The temperature at which the vapour pressure of a liquid equals the atmospheric/external pressure.  (2)
3.2 To ensure a fair test /To ensure there is one independent variable  (1)
3.3

  • Hexane has London forces (only)
    Pentanal has dipole-dipole forces (and London forces)
  • Dipole-dipole forces are stronger ( than the london forces in hexane)
    OR London forces are weaker (than the Dipole-dipole forces in pentanal)
  • More energy is required to overcome the intermolecular /Dipole-dipole forces in Pentanal  (4)

3.4 Higher than  (1)
3.5

  • Chain isomer of pentan-2-ol (2-methylbutan-2-ol) has a shorter chain length/ smaller surface area than pentan-2-ol
  • London forces in the isomer of pentan-2-ol (2-methylbutan-2-ol) will be weaker (than that of pentan-2-ol).
    OR
  • Pentan-2-ol has a larger chain length/ surface area than its chain isomer
  • London forces in butan-2-ol is stronger (than that of the isomer of pentan-2-ol (2-methylbutan-2-ol)  (3)

3.6 2 C6H14 + 19 O2 → 12 CO2 + 14 H2O
Marking criteria

  • Reactants
  • Products 
  • Balancing     (3)

[14]

QUESTION 4
4.1.1 Substitution /Hydrolysis  (1)
4.1.2 Butan-2-ol OR/OF 2-butanol (2)
4.2  4.2 iahuyda (6)

Balancing
Marking criteria
For organic reagents

  • Whole structure correct(2/2)
  • Functional group correct (1/2)

4.3
4.3.1 Hydrogenation (1)
4.3.2 Platinum/Palladium/Nickel (1)
4.3.3
4.3.3 ihuaf
Marking criteria
For organic reagents

  • Whole structure correct (2/2)
  • Functional group correct (1/2)  (2)

4.4
4.4.1 Esterification/Condensation  (1)
4.4.2 Heat/Add a catalyst/H2SO4  (1)
4.4.3 Water/H2O (1)
4.4.4

4.4.4 augdya
Marking criteria

  • Whole structure correct (2/2)
  • Functional group correct (1/2)
  • Name correct (2/2)

Propyl butanoate  (4)
[20]

QUESTION 5
5.1 The change in concentration of reactants or products per unit time.(2)
5.2 Carbon dioxide/CO2 (1)
5.3 Stopwatch  (1)
5.4

  • Rate = -Δ m/Δt
    Rate= –(200 -184,80) / (5 – 0)
    Rate = 3,04 (g∙min-1)
    Accept:
    Rate = (184,80 –200) / (5 – 0)        Rate = (200 –184,80) /(5 – 0)
            = - 3,04 (g∙min-1)                    Rate = 3,04 (g∙min-1)   (3)

5.5

  • mCO2 produced = 200- 184,80
    = 15.2 g
    nCO2 = m/M
    = 15,2 /44
    = 0,35 mol
    nCaCO3 reacting = 0.35 mol
    = 0.35 x 100
    = 35 g

Marking guidelines

  • Mass of CO2
  • Formula n = m/M
  • Substitution of 44 into n = m/M
  • Use of ratio CaCO3: CO2 (1:1)
  • Substitution of 100 into  n = m/M
  • Final answer
    (Ratio) mCaCO3 reacting= n.M                (6)

5.6.1 Temperature (1)
5.6.2 B (1)
5.6.3

  • Higher temperature increases average kinetic energy of the particles increases.
  • More particles have sufficient kinetic energy (to collide effectively) / More particles have Ek greater or equal to Ea
  • More effective collisions per unit time  (3)

5.7.1

  • What effect will the concentration (of a substance) have on the rate of reaction?
    OR
  • What is the relationship between reaction rate and concentration?
    OR
  • How does concentration affect reaction rate?

Marking criteria
For organic reagents

  • Independent variable and dependent variable correct
  • In the form of a question  (2)

5.7.2 LOWER THAN (1)
5.7.3 EQUAL TO(1)
5.8 The same amount of CaCO3 (the limiting reagent) is used in both experiments  (2)
[24]

QUESTION 6
6.1 Reaction in which products can be converted back to reactants   (2)
6.2 FORWARD REACTION(1)
6.3 No

  • The rate of forward reaction is equal to the rate of reverse reaction /Reaction reached equilibrium   (3)

6.4.1 Increases  (1)
6.4.2 Remains the same  (1)
6.4.3 Increases (1)
6.5

  • The amount of HI remains constant.
  • The volume decreases
  • The concentration increases according to c = n/V (2)

6.6.1 High yield                   Kc is large            OR             Kc >1 (2)
6.6.2 EXOTHERMIC 

  • The value Kc decreases with an increase in temperature.
  • As temperature increases, the [prdoducts] decreases 
  • Reverse reaction is favoured by an increase in temperature
    OR
  • The value Kc increases with a decrease in temperature.
  • As temperature decreases the [products] increases
  • Forward reaction is favoured by a decrease in temperature  (4)

6.7.1

  • Kc = [HI]2/[H2].[I2]
    50,3 = [HI]2/(0.46)(0,39)
    [HI] = 3 mol.dm-3            (4)

6.7.2 POSITIVE MARKING FROM 6.7.1 
OPTION 1 : CALCULATIONS USING NUMBER OF MOLES

Marking Criteria for Mole Option

  • Multiplication/ van c equilibrium by/ met 0,5 dm3 for/ vir I2 ,H2 and HI
  • Calculations of moles of HI reacting
  • Using mole ratio 2 n(HI) = n(H2) = n (I2) reacting
  • Calculation of (H2) initial and n (I2) initial (Δn + nequilibrium)
  • Multiplication /  van n (I2) by 2 to find  n (HI) theoretical 
  • Substitution into Yield = nproduced x 100
  • Final answer  (RANGE : 78,95% – 79,37%)

CALCULATION USING MOLES

 

H2

I2

2HI

ni

0,98

0,945

0

Δn

0,75

0,75         Ratio

1,5

nequilibrium 

0,23

0,195

1,5  (x 0,5 dm3)

cequilibrium

0.46

0,39

3

I2 is the limiting reagent 
n (HI) theoretical  = 2 (n I2 initial) = 2 x (0,945) = 1,89 mol
% Yield  = nproduced X 100 = 1,5/1,89 x 100 = 79,37 %
H2 used as limiting reagent Max 3/7

OPTION 2: CALCULATION USING CONCENTRATIONS
Marking Criteria for concentration Option 

  • Calculations of  cHI reacting
  • Using mole ratio 2 c(HI) = c(H2) = c(N2) reacting 
  • Calculation of cH2 initial  and cI2 initial (Δc + cequilibrium )
  • Multiplication of  cI2 by 2 to find vind nHI theoretical 
  • Substitution into Yield  = n
    HIproduced x 100
  • Final answer 
    (RANGE: 78,95% -79,37%)
 

H2

I2

2HI

ci

1,96

1,89

0

Δc

1,5

1,5 (Ratio)

3 (cHI equil)

cequilibrium

0.46

0,39

3

I2 is the limiting reagent 
C (HI) theoretical = 2 x 1,89 = 3,78 mol.dm-3
% Yield  = cproduced x 100 =3/3,78 x 100 =79,37%          (7)

H2 used as limiting reagent Max 3/7
[28]

QUESTION 7 
7.1.1 An acid is a substance that donates protons /H+ions  (2)
7.1.2 H2PO4 (1)
7.1.3

  • Reaction I : Reverse reaction it accepts a proton (H+) / acts as a base
  • Reaction II: Foward reaction donates a proton (H+)/ act as an acid.  (2)

7.1.4 HPO42

  • The conjugate base of a weak acid
  • lower Ka value is the stronger base   (3)

7.2.1 Reaction of a salt with water (2)
7.2.2 C2HO4 (2)
7.2.3 (Excess) OH- ions/hydroxide ions are produced   (2)
7.3.1 A strong base undergoes complete ionisation /disociation  (2)

7.3.2

OPTION 1 / OPSIE 1

OPTION 2 / OPSIE 2

 
 

Kw = [H3O+][OH-]

pOH = -log[OH-]

 
 

1x10-14 = [H3O+](0,5)

pOH = - log (0,5)

 
 

[H3O+] = 2x10-14 mol∙dm-3

pOH = 0,30

 
 

pH = -log[H3O+]

pH + pOH = 14

 
 

pH = - log(2x10-14)

pH + 0,30  = 14

 
 

pH = 13,70

pH = 13,70

(5)

7.3.3 OPTION 1 

  • caVa  = na
    cbVb     nb
       ca(25)     =
    (0,5)(24)        2
    ca = 0,24 mol∙dm-3
    c =
         MV
    0,24 =         7,56        
              (90+18x)(0,25)
    x = 2

OPTION 2 :
Marking guideline 

  • Substitution of  0,5 and  24/100 in n = cV
  • Use of mole ratio  in Acid: Base 1:2
  • Calculating number of moles of acid in original solution
  • Use of  90 in m = nM
  • Calculation of mass of water of crystallization in original solution
  • Calculating ration of nWater/nAcid 
  • Final answer 

n NaOH reacting  = cV= 0.5 x 24/1000 = 0.012 mol
noxalic acid reacting = ½ x 0.012 mol = 0,006 mol
noxalic acid in original solution  = 250/25 x 0,006
= 0,06 mol
moxalic acid in original solution  = nM = 0,06 x 90
= 5,4 g
m H2O of crystallisation in original solution  = 7,56 - 5,4
= 2.16 g
n H2O crystalllisation  = 2,16 /18 = 0,12 mol
x = 0,12/0,06 = 2                (7)

[28]
TOTAL  150

Last modified on Tuesday, 01 March 2022 07:51