PHYSICAL SCIENCES
PAPER 2
GRADE 12 
NSC EXAMS
PAST PAPERS AND MEMOS JUNE 2019

MEMORANDUM 

QUESTION 1
1.1 B √√ (2)
1.2 B √√ (2)
1.3 C √√ (2)
1.4 A √√ (2)
1.5 D √√ (2)
1.6 C √√ (2)
1.7 A √√ (2)
1.8 D √√ (2)
1.9 A √√ (2)
1.10 D √√ (2) [20]

QUESTION 2
2.1 CONCENTRATED √ (1)
2.2 To prevent reagents escaping √ /To smell the ester/Acts as a condenser (1)
2.3 H2O √ (1)
2.4 propan-1-ol √√ Accept 1-propanol propanol (1/2) (2)
2.5

  • n= 54,55/12 √ = 4,55 n = 9,1/1 √= 9,1 n =(100-54.55-9.1) √ /16 √ = 2.27
                           = 2         = 4
    • Empirical formula C2H4O √
    • Molar mass(R) = 130 + 18 - 60= 88 √
    • MMolar Mass (Empirical formula) = 2 x 12 + 4 x 1 + 1 x 16 = 44 √
    • Molecular formula  = C4H8O2 √ (8)  [13]

QUESTION 3
3.1
3.1.1 

  1. Esters √  (1)
  2.  3.1.1 jgaufgytadg (2)

Marking Criteria

  • Whole structure correct2/2
  • Only functional group correct ½   

3.1.2 Same molecular mass √√ /Same molar mass (2)
3.1.3 B has two sites for hydrogen bonding √. A has one site for hydrogen bonding √ (2)
3.2
3.2.1 Yes √

  • Same molecular formula √ but different structural formulae √ (3)

3.2.2 Y √

  • D has a larger surface area/chain length than E √
  • London forces/Induced-dipole forces √/Dispersion forces stronger√ in D than in E
  • More energy needed to break/overcome forces in √
    OR

Y √

  • E has a smaller surface area/chainlength than D √
  • London forces/Induced-dipole forces √/Dispersion forces weaker in E than in D
  • Less energy needed to break forces in E √(4)[14]

QUESTION 4
4.1
4.1.1

  1. Addition √ /Halogenation/Bromination √ (1)
  2. Elimination √/Dehydrohalogenation √ (1)

4.1.2 

  1. 4.12 jygujyguda(3)
    • Marking criteria
      • Whole structure correct 3/3
      • Two Br atoms in structure 1/3
  2. Chlorine √ (1)

4.1.3 

  1. 4.1.3 uygutayd(4)
    • Marking criteria
      • Whole structure correct 2/2
      • Only functional group correct ½
  2. Strong heat √ OR Concentrated strong base (1)

4.2
4.2.1 ADDITION √ (1)
4.2.2 n = 1000 √ (1)
4.2.3 Monomer √ (1)
4.2.4 Make plastics√/ (Any other correct answer) (1)
4.3
4.3.1 Breaking down of a long chain √ /hydrocarbon/alkane into more useful shorter chains √ (2)
4.3.2 THERMAL CRACKING √
TERMIESE KRAKING (1)
4.3.3
4.3.3 kgjygad Hexane √√ (4)
Marking criteria

  • Whole structure correct 2/2
  •  If one or more hydrogens are omitted ½[22]

QUESTION 5
5.1 Temperature√/Concentration √ (of H2O2)/Add a catalyst √(3)
5.2 Change in concentration per unit time/Rate of change of concentration √√ OR change in amount/volume/mass of reactant/product per unit time. (2)
5.3
5.3.1 Average rate

  • = - ∆c/∆t= - (1,45-1,9) √ /(15-0) √
    = 0,03√ (mol·dm-3·min-1) (3)

5.3.2 High concentration √√ ( of H2O2 initially)(2)
5.4
5.4.1 ENDOTHERMIC √ (1)
5.4.2 Catalyst increases rate of reaction√

  • By lowering activation energy /Deur aktiveringsenergie te verlaag √
  • More particles have sufficient Ek to react √/More particles have Ek greater or equal to Ea (4)

5.5
5.5.1 Experiment 1 √ : More particles have higher Ek √(2)
5.5.2 EQUAL TO √Same amount of H2O2 used in both experiments √ (2)
5.6

  • nO2 = V/Vm = 0,2/24,8 √ = 8,065 x 10-3 mol
    nH2O2 = 2 √ x 8,065 x 10-3
    = 0,061 mol
    m H2O2 = nM √= 0,0161 x (2+32) √
    = 0,547g√ (0,55 g ) (5)

5.7
5.7.1 Q √ (1)
5.7.2 R √ (1)
5.7.3 P √ (1)  [27]

QUESTION 6
6.1 Stage reached by a chemical reaction where the rate of forward reaction equals the rate of reverse reaction √√ (2)
6.2 6.2.1 REMAINS THE SAME √ (1)
6.2.2 INCREASES √ (1)
6.2.3 INCREASES √ (1)
6.3 Decreasing pressure is opposed √Reaction which produces more gas moles is favoured √ Forward reaction is favoured √ (3)
6.4 6.4.1 REVERSE √(1)
6.4.2 Catalyst √√ (added)(2)

OPTION 1
6.5 CALCULATIONS USING NUMBER OF MOLES

  • Divide by  44 in n = m/M √
  •  Divide nCO2equilm & nCO equilm by 2 √
  •  ∆n(CO2) = ninitial -neq
  •  Ratio  CO2 : CO 1 : 2 √
  •  nequil CO = nCOinitial+ ∆n(CO) √
  • Kc expression √
  • Substituting cequilmCO en cequilimCO2
  • Final answer √

OPTION 1
ninitial CO2= m/M = 104,72/44 √ = 2,38 mol

  CO   CO
ninitial    2,38   0
∆n  0,48   0,95 (Ratio)
nequilm  1,9   0,96
   7,6   3,84√(Division by 0,25)
  • Kc = [CO]2/[CO2] √
    = 3,842/7,6 √
    = 1,94 √

OPTION 2
CALCULATIONS USING CONCENTRATION

  • Substitute into  C=m/MV
  • Substitute into c=n/V√
  • ∆c(CO2) = cinitial -ceq
  • Ratio CO2 : CO 1:2 √
  • cequil CO = cCOinitial+ ∆c(CO) √
  • Kc expression√
  • Substituting  cequilmCO and cequilimCO2
  • Final answer  √
Initial Concentration of CO2    Equilibrium concentration of CO2
 c= m
     MV
C =  104,72
      (44)(0,25)
c = 9,52mol.dm-3
 c = n
       v
c = 1,9
     0,25
c=3,84mol.dm-3
  CO2   CO
Cinitial   9,52  -  0
∆c  1,90√  -  3,84√(Ratio)
c equilm  7,60  -  3,84√
  • Kc = [CO]2/[CO2] √
    = 3,842/7,6 √
    = 1,94 √ (8)

6.6
6.6.1 Low √ Yield/
Kc is low √/ Kc is less than 1/ [REACTANTS] > [PRODUCTS]2)
6.6.2 Exothermic √ 

  • As temperature decreases, Kc decreases, [Products]decreases √OR [Reactants increases]
  • Reverse reaction is favoured √
  • Decrease in temperature favours exothermic reaction √ (4) [25]

QUESTION 7
7.1
7.1.1 Reaction of a salt with water √√ (2)
7.2
7.1.2 Can act as acid and as a base √√/Can donate H+ and accept H+(2)
7.1.3 HCO3- √ (1)
7.1.4 H2CO3 √ (1)
7.2 7.2.1 Standard √ (solution) (1)
7.2.2 CH3COOH √√ (2)
7.2.3

  • c1V1=c2V2                                                   n=cV=(0,2)(0.02) √ =0,004 mol
    0,2 x 20 √ = 0,16 x V2 √                        V=n/c= (0,004)/(0,16) √
    V2 = 25 cm3√ OR 0,025 dm3                V=25 cm3 √ OR 0,025 dm3 (3)

7.3 7.3.1 Neutralisation √ (1)
7.3.2 6,8 to 7,2 √ Titration between strong base and a strong acid √ Solution at endpoint is neutral √ (3)
7.3 UJYGAUTFGAD

TOTAL: 150

Last modified on Friday, 01 October 2021 07:44