PHYSICAL SCIENCES: CHEMISTRY (PAPER 2)
GRADE 12
NATIONAL SENIOR CERTIFICATE EXAMINATIONS
MEMORANDUM
MAY/JUNE 2019

QUESTION 1/VRAAG 1
1.1 C ✓✓ (2)
1.2 A ✓✓ (2)
1.3 C ✓✓ (2)
1.4 A ✓✓ (2)
1.5 D ✓✓ (2)
1.6 C ✓✓ (2)
1.7 D ✓✓ (2)
1.8 D ✓✓ (2)
1.9 C ✓✓ (2)
1.10 A ✓✓ (2)
[20]

QUESTION 2
2.1 Unsaturated ✓
ANY ONE

  • C/It has a triple/multiple bond. ✓
  • C/It has a triple/multiple bond between C atoms.
  • C/It does NOT contain the maximum number of H atoms bonded to C atoms.
  • Compound C is an alkyne. (2)

2.2
2.2.1 D ✓ (1)
2.2.2 B ✓ (1)
2.2.3 C ✓ (1)
2.2.4 E ✓ (1)
2.3
2.3.1 1(1)
2.3.2 
2 (2)
Marking criteria:

  • Whole structure correct:2/2
  • Only functional group correct:½

IF

  • More than one functional group: 0/2
  • If condensed or semi structural formula used: Max.½

2.3.3
3
Marking criteria:

  • Three C atoms in longest chain. ✓
  • One methyl subrstituent on C2

IF
Any error e.g. omission of H atoms, condensed or semi structural formula Max: ½ (2)
2.4
2.4.1
2,3-dibromo-5-methylheptane
Marking criteria:

  • Correct stem i.e. heptane. ✓
  • All substituents (bromo and methyl) correctly identified. ✓
  • IUPAC name completely correct including numbering, sequence, hyphens and commas. ✓(3)

2.4.2 2C4H10 + 13O2 ✓ →  8CO2 + 10H2O ✓ Bal ✓
Notes:

  • Reactants ✓ Products ✓ Balancing ✓
  • Ignore double arrows and phases.
  • Marking rule 6.3.10.
  • If condensed structural formulae used: Max.2/3
  • Accept coefficients that are multiples.(3)

[17]

QUESTION 3
3.1
3.1.1 Yes✓
ANY ONE:

  • Compounds have the same molecular mass. ✓
  • Only one independent variable. (2)

3.1.2 Functional group/Homologous series/Type of (organic) compound ✓ (1)
3.2 A/butane ✓
Lowest boiling point/weakest intermolecular forces. ✓(2)
3.3 Marking guidelines

  • Type of IMF in A.
  • BOTH B and C have hydrogen bonding.
  • Compare number of sites for hydrogen bonding in B and C.
  • Compare strength of IMFs.
  • Compare energy required.

  • Between molecules of butane/compound A are London forces/dispersion forces/induced dipole forces. ✓
  • Molecules of compound B/propan-1-ol have one site for hydrogen bonding.✓
  • Molecules of compound C/ethanoic acid have two/more sites for hydrogen bonding. ✓
  • Strength of intermolecular forces increases from compound A/butane to compound B/propan-1-ol to compound C/ethanoic acid. ✓
    OR
    Intermolecular forces in compound A/butane are the weakest and intermolecular forces in compound C/ethanoic acid are the strongest.
  • More energy is needed to overcome/break intermolecular forces in compound C than in the other two compounds. ✓(5)

3.4 Butan-1-ol ✓
Longer chain length./Larger molecule./Larger molecular mass./Larger molecular size./Stronger intermolecular forces./Larger surface area.✓(2)
[12]

QUESTION 4
4.1
4.1.1 Addition (polymerisation)✓(1)
4.1.2 Ethene ✓(1)
4.1.3 Polyethene/polythene ✓(1)
4.2
4.2.1 Dehydration/elimination ✓(1)
4.2.2 Catalyst/dehydrating agent/causes dehydration/removes water molecules ✓(1)
4.2.3 Prop-1-ene/propene (2 or 0)(2)
4.2.4
4
Marking criteria:

  • Whole structure correct:
  • Only functional group correct: Max: ½

IF:

  • More than one functional group: 0/2
  • If condensed or semi structural formula used:Max.½ (2)

4.2.5 Addition/Hydration ✓(1)
4.2.6 Propan-2-ol✓✓
Marking criteria:

  • Correct stem and functional group i.e propanol ✓
  • Name completely correct ✓✓ (2)

[12]

QUESTION 5
5. 1 NOTE
Give the mark for per unit time only if in context of reaction rate.
ANY ONE

  • Change in concentration ✓ of products/reactants per (unit) time. ✓
  • Change in amount/number of moles/volume/mass of products or reactants per (unit) time.
  • Amount/number of moles/volume/mass of products formed/reactants used per (unit) time.
  • Rate of change in concentration/amount/number of moles/volume/mass.(2 or/of 0)(2)

5.2.2

Criteria for conclusion: 
Dependent (reaction rate) and independent (concentration ) variables correctly identified.  ✓ 
Relationship between the independent and dependent variables correctly stated.  ✓ 

Example:
Reaction rate increases with increase in concentration./Reaction rate is proportional to concentration.
IF
DIRECTLY proportional: Max: ½ (2)
5.2
5.2.1 Rate of the reaction ✓ (1)
5.3.2 B ✓ (1)
5.3.3

  • At a higher temperature particles move faster/have a higher kinetic energy. ✓
  • More molecules have enough/sufficient (kinetic) energy. ✓
  • OR
    More molecules have (kinetic) energy equal to or greater than activation energy.
  • More effective collisions per unit time/second./Increased frequency of effective collisions. 
  • Reaction rate increases. ✓ (4)

5.3
5.3.1 Activation energy/(The boundary line for the) molecules with (adequate) kinetic energy to make effective collisions. ✓(1)
5.4 Curve Y/it was obtained for the reaction where a catalyst was added. ✓
OR
Curve X was obtained for the reaction in the absence of a catalyst. (1)
5.5 Marking guidelines

  • Any formula: n=or c= n
                              M          V
  • Substitute 0,1 dm3 in n = cV ✓
  • Use mole ratio:
    n(S)expected = ½n(HCℓ)used ✓
  • Substitution of 32 g∙mol-1 in n = m
                                                        M
  • SUBSTITUTE in:
    n(S) produced x 100/ m/(S) produced x 100
    n(S) expected             m(S) expected
  • Final answer: 56,25% to 60% ✓
OPTION 1
n(HCℓ)used = cV ✓
= 0,2 x 0,1 ✓
= 0,02 mol
n(S)expected = ½n(HCℓ)used
= ½(0,02) ✓
= 0,01 mol
n(S)produced = m 
                          M
= 3218,0
= 0,0056 mol
%yield =n(S)prod x 100
              n(S)exp
=0.0056 x 100
    0.01
= 56,25% ✓
OPTION 2
n(HCℓ)used = cV✓
= 0,2 x 0,1 ✓
= 0,02 mol
n(S)expected= ½n(HCℓ)used
= ½(0,02) ✓
= 0,01 mol
m(S)expected= nM
= (0,01)(32) ✓
= 0,32 g
%yield =m(S)prod x 100
               m(S)exp
=0.18 x 100
  0.32
= 56,25% ✓

(6)
[18]

QUESTION 6
6.1 Reversible reaction/Both forward and reverse reactions can take place./Products can be converted back to reactants. ✓(1)
6.2 To favour the forward reaction/production of ammonia./To increase the yield of ammonia./Prevent the decomposition of NH3. (1)
6.3 20(%) ✓ (1)
6.4
6.4.1 At 500 °C lower yield of ammonia:

  • The (forward) reaction is exothermic./Reverse reaction is endothermic. ✓
  • An increase in temperature favours the endothermic reaction. ✓
  • The reverse reaction is favoured.✓
    OR
    At 350 °C higher yield of ammonia:
  • The (forward) reaction is exothermic./Reverse reaction is endothermic. ✓
  • A decrease in temperature favours the exothermic reaction. ✓
  • The forward reaction is favoured. ✓(3)

6.4.2 At 350 atm higher yield of ammonia:

  • An increase in pressure favours the reaction that produces the lower number of moles/number of molecules/volume of gas. ✓
  • The forward reaction is favoured. ✓
    OR
    At 150 atm lower yield of ammonia:
  • A decrease in pressure favours the reaction that produces the higher number of moles/number of molecules/volume of gas. ✓
  • Reverse reaction is favoured. ✓(2)

6.5
6.5.1 1 mol N2 reacts with 3 mol H2 to produce 2 mol NH3
∴ 2 mol N2 reacts with 6 mol H2 to produce 4 (mol) NH3 ✓✓ (2 or 0)(2)
6.5.2 POSITIVE MARKING FROM QUESTION 6.5.1.
Marking criteria:

  • Calculate 35% of 4 mol NH3 (answer from Q6.5.1)✓
  • Use mol ratio n(N2) : n(H2) : n(NH3) = 1 : 3 : 2 ✓
  • Equilibrium n(N2) = initial n(N2) - Δn(N2)
    Equilibrium n(H2) = initial n(H2) - Δn(H2)
  • Divide by 0,5 dm3. ✓
  • Correct Kc expression (formulae in square brackets). ✓
  • Substitution of concentrations into correct Kc expression. ✓
  • Final answer: 0,002 ✓
    Range: 0,00155 to 0,002 (1,55 x 10-3 to 2 x 10-3)

n(NH3) = 35 × 4
              100
= 1,4 mol

  N2 H2 NH3
Initial amount (moles)  6 6 0
Change in amount (moles) 0.7 2.1 1.4
Equilibrium amount (moles) 5.3 3.9 1.4
Equilibrium concentration (mol∙dm-3) 10.6 7.8 2.8

ratio✓
Divide by 0,5 dm3

Kc =   [NH32   
        [H2]3 [N2] ✓
=     (2.8)2     
   (7.8)3(10.6) ✓
= 0,002 ✓ (7)

Wrong Kc expression: Max.4/7
No Kc expression, correct substitution: Max.6/7
[17]

QUESTION 7
7.1 A base forms hydroxide ions (OH-) in water/aqueous solution. ✓✓
IF:
A base ionises to form hydroxide ions (OH-).✓. Max.½ (2)
7.2 A strong base ionises/dissociates completely ✓ and a weak base ionises/dissociates incompletely. ✓ (2)
7.3 HCO-3(aq) + H2O(ℓ) ✓ ⇌ H2CO3(aq) + OH-(aq) ✓ Bal. ✓
Accept
NaHCO3(aq) + H2O(ℓ) ⇌ H2CO3(aq) + NaOH(aq)
Notes:

  • Reactants ✓ Products ✓ Balancing ✓
  • Ignore single arrow.
  • Marking rule 6.3.10.
  • Ignore phases. (3)

7.4
7.4.1 pH = -log[H3O+] ✓
= -log (0,2) ✓
= 0,70 ✓ (0,699) (3)
7.4.2 Titration of a weak base and a strong acid. ✓
OR
The endpoint will be at pH < 7. (1)
7.4.3 Marking guidelines:

  • Any formulae: c= / n==/ Ca x Vana  /c =
                                  V         M     cb x Vb     nb       MV
  • Substitute 0,2 mol∙dm-3 & 20 x 10-3/0,02 dm3 or 20 cm3. ✓
  • Use mol ratio n(XHCO3) : n(HCℓ) = 1 : 1 ✓
  • Substitute n(XHCO3) or c(XHCO3) AND 0,4 g. ✓
  • M(X) = 39 g∙mol-1
  • X = K/potassium. ✓
OPTION 1
c(HCℓ) =
              V
∴ 0,2 =     n      
           20 x 10-3
n(HCℓ) = 4 x 10-3 mol
n(XHCO3) = n(HCℓ) ✓
= 4 x 10-3 mol
OPTION 2
Ca x Vana  
 cb x Vb    nb
0.2 x 20
cb x 100    1
cb = 0,04 mol∙dm-3
c(XHCO3)=  m  
                    MV
∴0,04 =  0.4  
           M(0.1)
M(XHCO3) = 100 g∙mol-1
M(XHCO3)= M(X) + 61
= 100
∴M(X) = 39 g∙mol-1
X = K 
OR
potassium 
n=
     M
∴4 x 10-3 = 0.4 
                    M
M = 100 g∙mol-1
M(XHCO3) = M(X) + 61
= 100
∴M(X) = 39 g∙mol-1
X = K ✓
OR
potassium
1 mol
M(XHCO3) 4 x 10-3 mol
0,4 g 
M(XHCO3) = 100 g∙mol-1
M(XHCO3) = M(X) + 61
= 100
∴M(X) = 39 g∙mol-1
X = K ✓
OR
potassium

(6)
[17]

QUESTION 8
8.1 It is a conductor of electricity/a solid to connect wires to./Pt is inert or unreactive.✓OR
Cℓ−(aq) and chlorine gas are not solids and cannot be used as an electrode. (1)
8.2
8.2.1 Chemical (energy) to electrical (energy) ✓ (1)
8.2.2 Cℓ2 + 2e- → 2Cℓ− ✓✓
Marking guidelines

  • Cℓ2 + 2e- ⇌ 2Cℓ− ½            2Cℓ− ⇌ Cℓ2 + 2e- 0/2
    2Cℓ− ← Cℓ2 + 2e- 2/2          2Cℓ−- → Cℓ2 + 2e- 0/2
  • Ignore if charge omitted on electron.
  • If charge (-) omitted on Cℓ− (-):
    Max:½  Example: Cℓ2 + 2e- → 2Cℓ ✓ (2)

8.2.3 Cr(s) | Cr3+(aq) ✓|| Cℓ2(g) | Cℓ− (aq) | Pt(s) ✓
OR
Cr(s) | Cr3+(1 mol∙dm-3) || Cℓ2(g) | Cℓ− (1 mol∙dm-3) | Pt(s)
Accept:
Cr | Cr3+ || Cℓ2 | Cℓ− | Pt (3)
8.3

OPTION 1
Eθcell = Eθreduction = Eθoxidation
= 1.36 -(-0.74)
Eθcell = 2.10V 

Notes

  • Accept any other correct formula from the data sheet.
  • Any other formula using unconventional abbreviations, e.g. E°cell = E°OA - E°RA followed by correct substitutions:3/4 
OPTION 2
Cℓ2 + 2e- → 2Cℓ−                                         Eθ = 1,36 V ✓
Cr(s) ✓ Cr3+(aq) + 3e-                                 Eθ = +0,74 V ✓
2Cr(s) + 3Cℓ2(g) → 2Cr3+(aq) + 6Cℓ−(aq)   Eθ = +2,10 V ✓ (4)
8.4 Increases ✓✓ (2)  

[13]

QUESTION 9
9.1 Electrolytic ✓ (1)
9.2 2H2O + 2e- → H2 + 2OH- ✓✓
Marking guidelines

  • 2H2O + 2e- ⇌ H2 + 2OH- ½         H2 + 2OH- ⇌ 2H2O + 2e- 0/2
    H2 + 2OH- ← 2H2O + 2e- 2/2          H22 + 2OH- → 2H2O + 2e- 0/2
  • Ignore if charge omitted on electron.
  • If charge (-) omitted on OH-: Max: 21 Example: 2H2O + 2e- → H2 + 2OH ✓ (2)

9.3
9.3.1 Chlorine (gas) / Cℓ2✓ (1)
9.3.2 P ✓ & Y ✓ (2)
9.4 Cathode✓
Reduction takes place here./Gains electrons.✓ (2)
9.5 CuCℓ2(aq) ✓ → Cu(s) + Cℓ2(g)✓ Bal✓
OR
Cu2+(aq) + 2Cℓ- → Cu(s) + Cℓ2(g)
Notes:

  • Reactants ✓ Products ✓Balancing ✓
  • Ignore double arrows.
  • Marking rule 6.3.10.
  • Ignore phases (3)

[11]

QUESTION 10
10.1
10.1.1 II – IV – III - I ✓ (1)
10.1.2 2NH3 + H2SO4 ✓ → (NH4)2SO4 ✓ Bal ✓
Notes:

  • Reactants ✓ Products ✓ Balancing ✓
  • Ignore double arrows.
  • Marking rule 6.3.10. (3)

10.1.3 Vanadium pentoxide (1)
10.1.4 SO3(g) + H2SO4 ✓→ H2S2O7 ✓ Bal ✓
Notes:

  • Reactants ✓ Products ✓ Balancing ✓
  • Ignore double arrows.
  • Marking rule 6.3.10. (3)

10.1.5 Sulphuric acid will form (white) mists./The reaction is very exothermic/gives off too much heat./Corrosive reaction. ✓ (1)
10.2

Marking criteria:

  • Calculate m(fertiliser). ✓
  • Use ratio:   2   +/m(P) = ½m(K) ✓
                   X + 3
  • Use m(K) = 3,33 kg ✓
  • Final answer: 3 ✓
OPTION 1
m(fertiliser) =  20 × 50
                      100
= 10 kg
m(K) =   2   × 10
          X + 3
∴3,33 ✓ =   2   × 10
               X + 3
∴ X = 3 ✓
OPTION 3
(fertiliser) =  20 × 50
                  100
= 10 kg
m(P) = ½m(K) ✓
= ½(3,33) = 1,665 kg
m(X) = 10 – 3,33 ✓– 1,665
= 5,005
N : P : K = 5,005 : 1,665 : 3,33
= 3 : 1 : 2
∴ X = 3 ✓ (4)  
OPTION 2
m(K) =   2   × 20  x 50= 3.33
           X + 3  100
X = 3 ✓

[13]
TOTAL: 150

Last modified on Tuesday, 28 September 2021 13:07