MATHEMATICS INVESTIGATION: 2023
GRADE 12
NATIONAL SENIOR CERTIFICATE
INSTRUCTIONS AND INFORMATION
Read the following instructions carefully before answering the questions.
INVESTIGATING COMPOUND ANGLES
QUESTION 1
1.1. In the following diagrams, π΄π΅π· = π½, π·π΅πΆ = πΌ, πΈπΉπ» = π½, πΈπΉ πΊ = πΌ
Write each of the following in terms of Ξ± and Ξ²
1.1.1 π΄π΅ # πΆ _________________________ (1)
1.1.2 π»πΉ # πΊ _________________________ (1)
1.2 Use your calculator to complete the table below. There is no need to show your working out.
Angles | Β cos(πΌ β Ξ²) | cosπΌ βcosΞ² | πππ πΌπππ π½ + π πππΌπ πππ½ | πππ πΌ cosΞ²βπ πππΌπ πππ½ |
ππ: πΌ = 60ΒΊ π½ = 30ΒΊ | cos(60Β° β 30Β°) = cos 30 = β3/2 | cos 60 β cos 30 | Β½Β ΓΒ β3/2Β +Β β3/2Β ΓΒ Β½ | Β½Β ΓΒ β3/2Β -β3/2Β ΓΒ Β½ |
πΌ = 110Β° and Ξ²= 50Β° | Β | Β | Β | Β |
πΌ = 87Β° and Ξ²= 42Β° | Β | Β | Β | Β |
πΌ = 223Β° and Ξ² = 193Β° | Β | Β | Β | Β |
(10)
1.2.2 What do you notice concerning the values of πππ (πΌ β π½) πππ πππ πΌ β πππ π½ ?
(Hint β are the values the same or different?) (1)
1.2.3 What do you notice concerning the values of cos(πΌ β Ξ²) and πππ πΌπππ π½ + π πππΌπ πππ½ (1)
1.2.4 What do you notice concerning the values of cos(πΌ β Ξ²) and πππ πΌπππ π½ β π πππΌπ πππ½? (1)
1.2.5 Hence deduce a formula to expand cos(πΌ β Ξ²) (2)
[17]
SECTION B
QUESTION 2
2.1 Now let us investigate whether the identity of cos(πΌ β Ξ²) = πππ πΌπππ π½ + π πππΌπ πππ½ is true for all values of Ξ± and Ξ².
Let P (cosπΌ; π πππΌ) and Q (cosπ½; π πππ½) be any two points on the circle O with radius 1. If πππ΄ = πΌ and πππ΄ = π½ then πππ = πΌ β π½
2.1.1 Make use of the cosine rule to determine the length of PQ.Β (4)
2.1.2 Make use of the distance formula to determine the length of PQΒ Β (5)
2.1.3 Hence, compare number 2.1.1 and 2.1.2 and write a conclusion about cos(a β b).Β (3)
2.1.4 Use 2.1.3 [cos(πΌ β π½) = πππ πΌ. πππ π½ + π πππΌ. π πππ½ ] to derive a formula for cos(πΌ + π½)
(Hint: use suitable reduction formula) (4)
2.1.5 Use cos(a β b) to derive a formula for sin(a β b).
(Hint: use co-function) (3)
2.1.6 Use cos(a β b) to derive a formula for sin(a + b).
(Hint: use co-function)Β (3)
[22]
QUESTION 3
Applications
3.1 Express the following as single trigonometry ratio:
3.1.1 πππ 2π₯. πππ 3π₯ β π ππ2π₯. π ππ3π₯ (2)
3.1.2 π ππ2π₯. πππ π₯ + πππ 2π₯. π πππ₯Β Β (2)
3.2 Determine the values of the following without using a calculator.
3.2.1 π ππ85Β°. πππ 25Β° β πππ 85Β°. π ππ25Β° (3)
3.2.2 πππ 160Β°. πππ 10Β° + π ππ160Β°. π ππ10Β° (4)
[11]